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Orbits a r e  generated by computational means and repre-  

The ser ies  is arranged according to descending values of 
sented in their geometry in pictorial form. 

the Jacobi integration constant "Ct '  which procedure is in agree- 
ment with the first-line ordering applied to the body of E-M orbits. 

to geometrical regions and the directions of motion. 

and C = 3.20388, the latter of which closely corresponds to that of 
the cis-lunar equilibrium point L1. 

Further breakdowns of the orbit classes a r e  made according 

This volume covers the orbits on the C-levels of C = 4.00 
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NOMOLOGY OF EARTH-MOON ORBITS, 

C = 4.00 AND C = C(L1) 

By R. F. Hoelker 
Electronics Research Center 

SUMMARY 

The mathematical representation of earth-moon orbits is done by the 
restricted problem of three bodies with a mass ratio p. of 1/80. 

Orbits a r e  generated by computational means and represented in their 
geometry in pictorial form. 

The ser ies  is arranged according to descending values of the Jacobi 
integration constant "C" which procedure is in agreement with the first-line 
ordering applied to the body of E-M orbits. 

r ical  regions and the directions of motion. 
Further breakdowns of the orbit classes a r e  made according to geomet- 

This volume covers the orbits on the C-levels of C = 4.00 and 
C = 3.20388, the latter of which closely corresponds to that of the cis-lunar 
equilibrium point L1. 

INTRODUCTION 

Past investigations about the existence of orbits in the restricted prob- 
lem of three bodies a r e  either aiming at representations of one-parametric 
families of orbits o r  exploring more-parametric orbit spaces within a small 
region of state space. 

The rich scope of literature concerned herewith, however, is still not 
sufficient to enable a researcher to form for himself a mental picture of all 
orbits existing, in the sense as he has this of all Kepler orbits. 

This lack of conceptualization is felt strongly by the engineer in all 
cases of practical applications as well as by the student in the course of 
studying th is  problem. 

The present report represents the first part  of an attempt to establish a 
rather complete survey of orbits of the restricted problem. 
understood in the following sense: 

This is to be 



f 
(1) Since the study is made by numerical methods, the 

density of the survey is contingent upon the step size of the 
numerical variational process. In general the aim will be to 
have the coverage dense enough to facilitate interpolation with 
respect to structural form of orbits. 

J 
I 

(2) The extension of coverage will range to such limits as 
to allow extrapolation to regions further out. \ 

1 
J ( 3 )  Orbits will be represented pictorially with emphasis 

on shape rather than tabulation of time histories. /I 

PROBLEM DESCRIPTION AND METHOD OF COMPUTATION 

The restricted problem of three bodies is concerned with the 
motion of a massless (third) body in the gravity field of two 
masses. The masses exert inverse-square gravitational forces on 
each other and on the third body, whereas the third body does not 
on the two masses. 

The motion of the two masses is here assumed to be circular, 
the center of the circle being at the center of mass. Their 
motion is planar. 

The ratio of the masses is 1 : 7 9  and in accordance with the 
proximity of this ratio to that of Moon to Earth, reference to 

these. However, the masses here are assumed to be point-masses. 
the masses as well as to the problem will be made in terms of 

I 

The motion of the third body will, for the length of this 
report, be restricted to the motion plane of the two masses. Its 
orbits will be studied and depicted within the frame of a rotating 
Cartesian coordinate system (XR Y R ) ,  lying in the motion plane, 
with the XR-axis through the masses and the YR- axis orthogonal 
to it through the mass center (Figure 1). 

The equations of motion for the 
third body (ref. 1) are as follows: 

r (1) r - -  r + 2 w  x r - w r = - - Gm2 

r2 - 

.. 2 Gml 
3 2  - - - 3 1  r -  

- 

MASS m2 1 / 
' L  

XR 

M A S S  m,  

with ml, m2 being the masses, repre- 
sentinq Earth E and Moon M, respectively; 
rl, r2-being the vectors from the masses 
to the third body; r being the vector 
from the mass center (orisin) to the 

ROTATING COORDINATE S Y S T E M  I X R .  Y R I  U S E D  

FOR THE R E S T R I C T E D  P R O B L E M  OF T H R E E  BODIES I 
body; w being the rate of-rotation of the Figure 1 

2 



~- 

system; and G being the gravitational constant. For w the re- 
lationship holds 

with D being the distance between the two 
Law). 

All representation in this report is 

masses (Kepler's Third 

done in normalized 
units. This means that the distance between the masses is unit 
length, the sum of the masses is unit mass, and the measure of 
the gravitational constant is unity. From this follows that the 
system rotation is at-unit rate, which then determines also the 
time unit. 

If the symbols are redefined to represent the normalized 
variables, the equations of motion read 

with the ''mass ratio" 1-1 being defined as 

l J = m  
1 + m2 

(4) 

The Jacobi Integral of this system can be written in the following 
form 

where C is the integration constant, which in this report will be 
referred to as the "Jacobi Constant". 

All orbits depicted in this report are derived by numerical 
computation, using either the IBM 7094 or 360. Plotting is done 
on the Stromberg-Carlson 4020 using taped output of the computer. 

The method of computation is based on the series-type special 
perturbation method as developed by R. Arenstorf (ref. 2) and for 
this application implemented by Berl Winston (ref. 3). 

3 



The computation of the zero-velocity curves is based on methods 
developed by J. McGann and P. Masucci (refs. 4 and 5). 

FIRST LINE DIVISION OF E-M-ORBITS ACCORDING TO 
VALUES OF THE JACOB1 CONSTANT C 

Though the problem of this report is only two-dimensional, 
the dimension of possible variation of initial conditions, which 
is four, would imply a number of orbit-runs unmanageable to over- 
see and organize, if this variation is done for all initial con- 
ditions independently. This method also would result in many 
unnecessary duplications of orbits. 

A more indigenous way of subdividing and organizing the 
problem solutions is found by making use of knowledge one posses- 
ses of the problem in analytical form. This is formulated in the 
Jacobi Integral (Eq. 5). 

An exploitation of this integral can be made in various ways: 

(a) The Jacobi-Integral yields a relationship between posi- 

(b) In relation to the task of structuring and classifying 
tion and velocity magnitude for any point of an orbit. 

the solutions of the restricted problem, the integral provides the 
most natural means of a first degree ordering of orbits. It 
simply suggests the definition of classes of orbits according to 
the value of the Jacobi constant C. 

the Jacobi integral defines Zero-Velocity curves, which separate 
the areas of existence of orbits from the "empty" areas. This 
property of the Jacobi Integral will be of great utility, in two 
respects: (1st) The procedure of surveying the orbits within a 
C-level will be based upon it. (2nd) A classification within a 
C-level will be derived from the "Keplerian" behavior of the E-M- 
orbits in levels of large C-values. 

(c) For values of the Jacobi constant C larger than 3.00, 

THE ZERO-VELOCITY CURVES AND THE EMPTY AREAS OF 
THE RESTRICTED PROBLEM OF THREE BODIES 

For the benefit of those readers who are not familiar with 
the geometrical implications of the Jacobi Integral, these may 
briefly be discussed and illustrated. 

If the integration constant C of the Jacobi Integral 

4 



i s  l a r g e r  than  3 ,  t h e  v e l o c i t y  VR assumes t h e  v a l u e  z e r o  on 
cu rves  of t h e  (XR,  YR) p lane .  These cu rves  r e p r e s e n t  boundary 
l i n e s  between a r e a s  o f  e x i s t e n c e  and areas where o r b i t s  do n o t  
e x i s t  w i th  t h a t  p a r t i c u l a r  C-value. The o v e r a l l  appearance of 
t h e s e  nze ro -ve loc i ty -cu rves"  i s  d e p i c t e d  i n  F i g u r e  2 ,  , f o r  t h e  
C-values of 3.30; 3.20388; 3.18720; 3.10; 3.02484; 3.010 and 
3.0010. 

FOR VARIOUS INTEGRATION CONSTANTS C 
OF THE JACOB1 INTEGRAL 

Figure 2 

For b e t t e r  v i s u a l i z a t i o n  as w e l l  as f u t u r e  r e f e r e n c e ,  t h e  
a r e a s  d e l i n e a t e d  by v a r i o u s  Zero-Velocity cu rves  a r e  i l l u s t r a t e d  
s e p a r a t e l y  on t h e  fo l lowing  s i x  f i g u r e s ,  F igu res  3 t o  8. The 
shaded a r e a s  are a r e a s  of  non-exis tence of o r b i t s  f o r  t h a t  pa r -  
t i c u l a r  va lue  of t h e  i n t e g r a t i o n  c o n s t a n t  C. 

The f i r s t  o f  t h e s e  s i x  f i g u r e s ,  F igu re  3 ,  shows t h a t  f o r  
C = 3.30 o r b i t s  e x i s t  i n  t h r e e  s e p a r a t e  r e g i o n s ,  a " t e r r e s t r i a l " ,  
a " l u n a r "  and an ' ' ou t e r "  r eg ion .  

Wi th  dec rease  of  t h e  Jacob ian  c o n s t a n t  t o  C = 3.20388 t h e  
t e r res t r ia l  and l u n a r  r e g i o n s  i n c r e a s e  such t h a t  t h e y  touch each 
o t h e r  (see F igure  4 ) .  
which i s  a l s o  one of t h e  c o l l i n e a r - e q u i l i b r i u m  p o i n t s .  

The p o i n t  of tangency i s  marked as L l ,  

The succeeding example (F igu re  5 )  shows t h e  i n s t a n t  where 
c o n t a c t  occu r s  between t h e  o u t e r  r e g i o n  and t h e  i n n e r  r e g i o n  
(which l a t t e r  c o n s i s t s  o f  t h e  t e r res t r ia l  and l u n a r  r e g i o n ) .  

5 



t yR t yR 

SHADED AREA I S  E M P T Y  OF 
L - O R B l l S  OF JACOBI CONSTANT C . 3 3 0  I 

Figure 3 

~ A O E D  AREA IS E M P T Y  OF 
ORBITS OF JACOBI CONSTANT C =  3 2 0 3 8 8  1 

Figure 4 

The point of first contact is again a dynamically important point, 
i.e., the translunar collinear equilibrium point L a .  

Figure 6 shows the development progressed so far that 
the gate between inner and outer region of existence has opened 
considerably. This situation corresponds to the integration 
constant C = 3.100. 

S H A O E D  AREA IS E M P T Y  OF I O R B I T S  OF JACOB1 CONSTANT Cs31872 1 
Figure 5 

S H A D E 0  A R E A  I S  EMPTY OF 
E l i S  OF JACOFJ CONSTANT C - 3  IO 1 -~ 

Figure 6 

Figure 7 then illustrates the point of C-curve development 
at which the third gate at L3 starts to open. The corresponding 
C-value is C = 3.02484. From this point on, the empty area is 
split into two separate areas that are reflective to each other 
with respect to the XR-axis. 

6 



The l a s t  f i g u r e  of t h i s  group (F igu re  8 )  shows an advanced 
s t a g e  of  s e p a r a t i o n  of t h e  t w o  empty areas. I ts  C-value i s  3 .010 .  

t YR t yR 

SHADED AREA IS EMPTY OF I ORBITS OF JACOB1 CDNSTeiN=2;1 

Figure 7 Figure 8 

For a v a l u e  of  C = 3 . 0 0  t h e s e  two p a r t s  degene ra t e  t o  a 
s i n g l e  p o i n t  each (L4 and L g ) ,  which a r e  e q u i l a t e r a l  t o  t h e  
masses. These two p o i n t s  r e p r e s e n t  t h e  on ly  s t a b l e  ones of t h e  
f i v e  e q u i l i b r i u m  p o i n t s .  

A s  mentioned b e f o r e ,  t h e  boundary cu rves  of t h e  o r b i t  a r e a s  

If C 1  i s  
f o r  a g iven  C-value a r e  cu rves  on which a l l  o r b i t s  of t h a t  pa r -  
t i c u l a r  va lue  of J a c o b i  c o n s t a n t  assume zero  v e l o c i t y .  
l a r g e r  than  Co  1 3 ,  t h e  boundar ies  of t h e  o r b i t  a r e a s  of C 1  l i e  
i n  t h e  i n t e r i o r  of t h e  Cg-areas and c o n s t i t u t e  f o r  Co-orb i t s  
curves  of  c o n s t a n t  v e l o c i t y ,  w i th  t h e  magnitude c a l c u l a t e d  from 
t h e  formula 

L VR = c1 - co. ( 7 )  

Since  t h e  use  of t h e  t e r m  " z e r o - v e l o c i t y  curve' '  i s  appropr i -  
a t e  on ly  f o r  p a r t i c u l a r  c u r v e s ,  once t h e  C-value i s  chosen,  t h i s  
r e p o r t  w i l l  r e f e r  t o  t h e  cu rves  of  e q u a l  v e l o c i t y  w i t h i n  an 
o r b i t a l  area as t o  " i s o t a c h s " .  The t e r m  'IC-curves" w i l l  a l s o  be 
used f o r  i s o t a c h s .  

The p o s s i b l e  use  of t h e  i s o t a c h s  a s  one s e t  of new o r thogona l  
c o o r d i n a t e s  may, a t  t h i s  p l a c e ,  on ly  be mentioned. 



SUBCLASSIFICATION OF ORBITS W I T H I N  A CONSTANT-C-LEVEL 
DEMONSTRATED ON KEPLER ORBITS OF C = 4 . 0 0  

The p r i n c i p l e  of  c l a s s i f y i n g  t h e  o r b i t s  w i t h i n  a cons t an t -  
C-level  i s  now d e r i v e d  from phenomena obse rvab le  f o r  Kepler o r b i t s  
t h a t  are r e p r e s e n t e d  i n  a r o t a t i n g  c o o r d i n a t e  system. 

The fo rmula t ion  of t h e  Kepler problem i n  r o t a t i n g  c o o r d i n a t e s  
can immediately be deduced from t h e  e q u a t i o n s  l i s t e d  b e f o r e  by 
reducing  t h e  smaller  of  t h e  two masses t o  zero .  This  i s  expressed  
i n  1-1 = 0 .  T h e i r  motion and i n t e g r a l  are d e s c r i b e d  by t h e  fol low- 
i n g  e q u a t i o n s :  

Kepler Motion i n  r o t a t i n g  c o o r d i n a t e s :  

J a c o b i  I n t e g r a l  f o r  Kepler Motion: 

2 = - + r 2 - c  2 
vR r 

wi th  r be ing  t h e  d i s t a n c e  from t h e  mass, which i s  l o c a t e d  a t  t h e  
o r i g i n .  

For t h e  Kepler problem t h e  ze ro  v e l o c i t y  curves  a r e  concen- 
t r i c  c i r c l e s ,  and t h e  r e g i o n s  of motions f o r  C > 3 a r e  a n  i n n e r  
and o u t e r  r e g i o n  of t h e  p l a n e ,  s e p a r a t e d  by a c i r c u l a r  r i n g -  
shaped a r e a  which  i s  empty of o r b i t s  f o r  t h e  C-value chosen. The 
empty r ing-shaped a r e a  degene ra t e s  i n t o  t h e  c i r c l e  of u n i t y  
r a d i u s  f o r  C = 3. F igu re  9 d i s p l a y s  t h e  boundary l i n e s  of t h e  
two a r e a s  of  e x i s t e n c e  of  o r b i t s  f o r  t h e  f o u r  v a l u e s  of C = 3.30; 
3 . 1 0 ;  3.01; and 3.00. 

To i n t r o d u c e  t h e  c l a s s i f i c a t i o n  p r i n c i p l e ,  a va lue  f o r  C 
w i l l  be chosen t h a t  i s  s t i l l  l a r g e r  t han  t h o s e  shown on t h e  graph ,  
namely C = 4 . 0 .  For t h i s  v a l u e  t h e  i n n e r  r eg ion  i s  bounded by 
t h e  c i r c l e  of  r a d i u s  .539 and t h e  o u t e r  r eg ion  comprises a l l  
p o i n t s  of  t h e  p l ane  wi th  r a d i u s  l a r g e r  o r  e q u a l  t o  1.675. 

I t  i s  e v i d e n t  t h a t  Kepler o r b i t s  of t h e  i n n e r  r eg ion  assume 
t h e i r  apocen te r s  and those  of  t h e  o u t e r  r e g i o n  assume t h e i r  
p e r i c e n t e r s .  A l s o ,  t h e i r  shapes are  independent  of  t h e i r  a l i g n -  
ments o r  " o r i e n t a t i o n s "  wi th  r e s p e c t  t o  t h e  axes  ( X R ,  Y R ) .  

The re fo re ,  f o r  t h e  t w o  r e g i o n s  a complete survey of  Kepler 
o r b i t s  i s  o b t a i n e d ,  i f  t h e  o r b i t s  of t h e  i n n e r  r e g i o n  are o rde red  

8 
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C = 3,IC c=3.30L '> I 

K E P L E R  P R O B L E M  IN  ROTATING 

CURVES OF ZERO O R B I T A L  VELOCITY 
FOR VARIOUS INTEGRATION CONSTANTS C 

OF THE JACOB1 INTEGRAL 

Figure 9 

wi th  t h e i r  apocen te r s  a long  t h e  p o s i t i v e  XR-axis and those  of  t h e  
o u t e r  r eg ion  a r e  o rde red  wi th  t h e i r  p e r i c e n t e r s  a long  t h i s  a x i s  
branch.  T h i s  procedure a l lows  t h e  i d e n t i f i c a t i o n  ( " t a g g i n g " )  of 
any o r b i t  by t h e  XR-axis p o s i t i o n  of i t s  apo- o r  p e r i c e n t e r ,  i . e . ,  
by v a l u e s  of a one-dimensional parameter .  There i s  a d u a l i t y  of 
o r b i t s  w i th  each v a l u e  of t h i s  parameter ,  however, s i n c e  t h e  d i -  
r e c t i o n  of t h e  v e l o c i t y  v e c t o r  a t  an a p s i d a l  p o i n t  can be chosen 
twofold.  

I n  t h e  fo l lowing  t h i s  method of o r d e r i n g  w i l l  be c a r r i e d  
through.  I n  t h e  cour se  of  it t h e  s u b c l a s s i f i c a t i o n  of t h e  o r b i t s  
w i l l  become e v i d e n t .  

S e l e c t i n g  f i r s t  t h e  i n n e r  r e q i o n  and apocen te r s  whose v e l o c i t y  
v e c t o r s  are d i r e c t e d  i n  p o s i t i v e  YR-d i rec t ion ,  a c l a s s  of o r b i t s  
can be d e f i n e d  i n  t h e  fo l lowing  way. The ve ry  f i r s t  o r b i t  i s  t h a t  
whose apocen te r  l i e s  a t  t h e  bo rde r  and t h e r e f o r e  shows zero- 
v e l o c i t y  t h e r e .  O r b i t s  t h e n  a r e  chosen by va ry ing  t h e  i n i t i a l  
p o s i t i o n  toward t h e  m a s s  c e n t e r  w i th  v e l o c i t i e s  i n c r e a s i n g  i n  mag- 
n i t u d e  i n  accordance w i t h  t h e  J a c o b i  i n t e g r a l  f o r  C = 4 . 0 .  The 
behavior  of  t h i s  c l a s s  and i t s  t e r m i n a t i o n  i s  b e s t  d i s c u s s e d  i n  
F igu re  1 0 .  The f i r s t  o r b i t  on F igu re  1 0  i s  t h a t  marked "A" ,  
forming a cusp a t  t h e  bo rde r  and then  moving about  t h e  c e n t e r  i n  
a " d i r e c t "  s ense  of r e v o l u t i o n .  I ts  t i m e  h i s t o r y  i s  shown t o  a 
l e n g t h  t h a t  j u s t  cove r s  i t s  p e r i c e n t e r .  The s a m e  o r b i t  i s  shown 
f o r  a longe r  t i m e  h i s t o r y  i n  F igu re  11. 

9 



Figure 10 

O r b i t s  "B"  and " C "  on F i g u r e  1 0  are o r b i t s  w i t h  a p o c e n t e r s  
moved f u r t h e r  i n .  With r e s p e c t  t o  t h e i r  p e r i c e n t e r s  one o b s e r v e s  
t h a t  t h e s e  move f u r t h e r  o u t .  O r b i t  IIB" i s  i n d i v i d u a l l y  shown on 
F i g u r e  1 2 .  

I yR 10.5 

L 
XR 

KEPLER ORBIT; Cz4.0: CLASS I B I I  
X R *  0.53919; YR*O.O: VR'O.O 
TIME SHOWN 8 4.505;  CUSPING 

Figure 11 

Apocenter and p e r i c e n t e r  have 
I ' D " ,  which, i n  f a c t ,  i s  a c i r c u l a r  

yR t O 

KEPLER ORBIT ; 
X R =  0.490; YR * 0.0 
Xk=O.OOO; Y R =  0.56721 

Cz4.0 ; CLASS I 

TIME SHOWN' 4.5 

Figure 12 

i d e n t i c a l  r a d i i  f o r  t h e  o r b i t  
o r b i t .  

O r b i t s  whose i n i t i a l  p o i n t s  are moved s t i l l  f u r t h e r  i n s i d e ,  
w i l l  have p o i n t s  o u t s i d e  t h e  c i r c u l a r  o r b i t  "D", as i s  demons t r a t ed  

10 



on o r b i t s  " E " ,  "F", and " G " .  This  means t h a t  t hese  o r b i t  types  
have been encountered before ,  except  f o r  t h e i r  o r i e n t a t i o n  which 
i s  ignored here .  

A l l  o r b i t  shapes between and inc luding  o r b i t  "A" and t h e  
c i r c u l a r  "D" (or i f  one p r e f e r s ,  between "A" and "GI1)  a re  now 
s a i d  t o  form a subclass  t o  t h e  Kepler o r b i t s  of  C = 4 .  These 
o r b i t s  have a t  a l l  t i m e s  t h e  d i r e c t  sense of motion, on account 
of which one could c a l l  t h e  c lass :  t h e  d i r e c t  class.  I t  i s  f e l t ,  
however, t h a t  t h e  t e r m  " d i r e c t "  i s  somewhat weak a s  class- 
desc r ip t ion ,  whence t h e  t e r m  "prograde" w i l l  be used i n s t e a d  i n  
t h i s  r epor t .  A l s o  t h i s  word s e e m s  t o  be an appropr ia te  p a r a l l e l  
t o  t h e  t e r m  ' ' re t rograde ' ' .  

I t  may be noted t h a t  t h e  a p s i d a l  p o s i t i o n s  (apocenters and 
p e r i c e n t e r s )  of t h e  prograde c lass  do n o t  f u l l y  occupy t h e  t o t a l  
p o s i t i v e  segment of t h e  XR = a x i s  wi th in  t h e  inne r  region.  

There i s  a f i n i t e  i n t e r v a l  l e f t  f r e e  between t h e  p e r i c e n t e r  
of o r b i t  "G"  and t h e  o r i g i n .  This w i l l  be occupied by t h e  o r b i t s  
of t h e  next  c lass .  

T o  develop t h e  second c l a s s ,  again t h e  cusping o r b i t  "A" i s  
taken as i n i t i a l  o r b i t ,  and apocenters  are  chosen s t a r t i n g  a t  t h e  
boundary c i r c l e  and moving toward t h e  i n t e r i o r .  However, now the  
ve loc i ty  d i r e c t i o n  a t  t h e  apocenters  i s  t o  be re t rograde .  

The development and t h e  e x t e n t  of t h i s  c lass  can be seen on 
Figure 13. C h a r a c t e r i s t i c  of t h i s  c lass  i s  t h e  change of sense 
of motion found wi th in  every o r b i t  of t h e  c lass  i . e . ,  r e t rog rade  
motion a t  apocenter and prograde motion a t  p e r i c e n t e r .  The c lass  
i s  bordered on one s i d e  by t h e  cusping o r b i t  and on t h e  o t h e r  
s i d e  by t h e  o r b i t  t h a t  impacts t h e  m a s s  (Orbi t  I'K" of Figure 1 3 ) .  
Two o r b i t s  of t h i s  c lass  a re  shown f o r  extended t i m e  h i s t o r i e s  on 
Figures  1 4  and 15. 

The changing sense of motion of t h e  o r b i t s  g ives  r i s e  t o  
def in ing  t h i s  c l a s s  as  t h e  c l a s s  of ambigrade o r b i t s  of t h e  inne r  
region of t h e  Kepler o r b i t s  of  C = 4 . 0 .  

The t h i r d  c lass ,  depic ted  on Figure 1 6 ,  i s  then cha rac t e r i zed  
by conta in ing  a l l  o r b i t s  whose sense of r evo lu t ion  i s  r e t rog rade  
a t  a l l  p o i n t s  on t h e i r  o r b i t s .  I t  t h e r e f o r e  i s  c a l l e d  t h e  c lass  
of r e t rog rade  o r b i t s .  This class s t a r t s  with o r b i t  "K", i t s e l f  
being t h e  l i m i t  between t h i s  and t h e  former c lass ,  and cont inues 
t o  t h e  c i r c u l a r  o r b i t  "N". Orb i t s  s t a r t i n g  i n s i d e  "N" with re t ro-  
grade d i r e c t i o n  belong s t i l l  t o  t h e  c lass ,  b u t  dup l i ca t e  shapes 
t h a t  are encountered before .  One example of  a r e t rog rade  o r b i t  
f o r  an extended t i m e  per iod  i s  exh ib i t ed  on Figure 1 7 .  

11 



I I 

Y R I  

KEPLER ORBITS OF JACOB1 CONSTANT C =  4.0 I 
I CLASS It: INNER REGION ORBITS 

WITH AMBIGRADE MOTION AT APSES 

Figure 13 

I.! 

KEPLER O R B I T ,  C =  4 . 0 ;  CLASS Ll 
X R  = 0 . 5 3 0 .  YR = 0,000 

TIME SHOWN 8 4 .518  
: 0.000, YR = - 0 . 2 3 3 4 2  

KEPLER ORBIT;  c . 4 . 0 ;  CLASS n em 
X R =  0.500; Y R =  0.000; COLLIDING 

X R =  0.000, YR. - 0 . 5 0 0  
TIME SHOWN' 4 .514  

Figure 14 Figure 15 

The three defined classes take up all radial magnitudes of 
apocenters that are possible in the inner region (or also all 
possible pericenter magnitudes), ignoring the orbit orientation. 

Of the three classes, the prograde and retrograde classes 
possess circular orbits. Also they may be considered "closed" in 
the sense that apocenter radii and pericenter radii form a con- 
tinuum. Both characteristics cannot be ascribed to the class of 
ambigrade orbits of the inner region of Kepler orbits of C = 4 .0 .  

12 
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I KEPLER ORBITS OF JACOB1 CONSTANT C =  4.0 L CLASS III: INNER REGION ORBITS 
WITH RETROGRADE MOTION AT APSES 

~~~~ 

Figure 16 

KEPLER O R B I T ,  C =  4.0; C L A S S  Ill 
X R  = 0.400. YR i 0,000 
%, = 0.000; YR = -1.07703 
TIME SHOWN 3 4.515 

Figure 17 

For surveying -he Kepler o r b i t s  of ---e o u t e r  region of 
c = 4 . 0 ,  a procedure i s  appl ied  t h a t  i s  q u i t e  s i m i l a r  t o  t h a t  used 
f o r  t he  inne r  region:  R e s t r i c t i n g  t h e  p e r i c e n t e r s  t o  l i e  on t h e  
p o s i t i v e  XR-axis f a c i l i t a t e s  an "order ing" of t h e  o r b i t s  by i d e n t i -  
fy ing  t h e  o r b i t s  w i t h  t h e i r  p e r i c e n t e r  l o c a t i o n s  on t h e  p o s i t i v e  
XR-axis. This procedure again l eads  t o  a u s e f u l  c l a s s i f i c a t i o n  
of t h e  o r b i t s .  

F i r s t  a l l  o r b i t s  with i n i t i a l l y  p o s i t i v e  v e l o c i t y  d i r e c t i o n  
(YRIO) may be chosen. 

s m a l l e s t  p o s s i b l e  va lue  toward i n f i n i t y .  Figure 1 8  d i s p l a y s  t h r e e  
The p e r i c e n t e r  l o c a t i o n  i s  va r i ed  from t h e  

13 



KEPLER ORBITS OF JACOB1 CONSTANT C = 4.0 I 
I CLASS I p s  OUTER REGION ORBITS 

WITH PROGRADE MOTION AT APSES 

Figure 18 

9 

o r b i t  examples.  O r b i t  "A" i s  t h e  o r b i t  t h a t  has  a cusp  on t h e  
o u t e r  z e r o - v e l o c i t y  c u r v e ,  i . e . ,  on t h e  i n n e r  b o r d e r  of t h e  o u t e r  
r e g i o n .  A l l  o r b i t s ,  s t a r t e d  on p o i n t s  f u r t h e r  o u t ,  (see o r b i t s  
"B" and 'IC") , move f i r s t  p rograde  and l a t e r  r e t r o g r a d e ,  main ta in-  
i n g  t h e  l a t t e r  d i r e c t i o n  f o r  a l l  t i m e  a f t e r .  Hence, t h e  class i s  
ambigrade. A l l  o r b i t s  of t h i s  c lass  are  h y p e r b o l i c  o r b i t s ,  i f  
s t u d i e d  i n  r e f e r e n c e  t o  an i n e r t i a l  system. 

F igu re  1 9  d i s p l a y s  a longe r  t i m e - h i s t o r y  o f  t h e  o r b i t  I'B" 
of t h i s  c lass .  

yR T 

K E P L E R  O R B I T '  C ' 4 . 0 .  CLASS Ill 
x, = 2.800. Y, = 0.000 

X, = 0.000; Y, = 2.13408 
TIME SHOWN 14.27 

Figure 19 
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The o r b i t s  of t h e  o u t e r  r eg ion  t h a t  s t a r t  i n  r e t r o g r a d e  
d i r e c t i o n  can be subdiv ided  i n t o  two classes. 
c e n t e r  n e a r e s t  t o  t h e  bo rde r  
For p e r i c e n t e r s  l o c a t e d  a t  r a d i i  l a r g e r  t han  2 . 0 0 ,  t h e  o r b i t s  are 
f i n i t e ,  i . e . ,  e l l i p t i c a l  w i th  r e s p e c t  t o  an i n e r t i a l  system. The 
hype rbo l i c  and t h e  e l l i p t i c  r e t r o g r a d e  c l a s s e s  are r e p r e s e n t e d  i n  
s e l e c t e d  o r b i t s  on F igu res  2 0  and 2 1 .  I t  i s  impor t an t  t o  observe  
t h a t  t h e  e l l i p t i c  r e t r o g r a d e  class produces a c i r c u l a r  o r b i t  and 
t h a t  t h i s  class may a l s o  be cons idered  l l c losed"  i n  t h e  s e n s e  men- 
t i o n e d  b e f o r e .  

Those wi th  p e r i -  
(r = 1 . 6 7 5 )  are s t i l l  hype rbo l i c .  

Figure 20 Figure 21 

Two examples of t h e  l a s t  c l a s s  a r e  i l l u s t r a t e d  i n d i v i d u a l l y  
on F igu res  2 2  and 2 3 .  

The o r b i t  p a t t e r n s  t h a t  have been d i s c u s s e d  i n  t h i s  c h a p t e r  
f o r  t h e  Kepler problem and t h e  c l a s s i f i c a t i o n s  in t roduced  w i l l  now 
be t h e  b a s i s  f o r  p a t t e r n  c l a s s i f i c a t i o n s  of o r b i t s  of  t h e  Ear th-  
Moon ( E - M )  problem. 

Though t h e  o r b i t a l  p a t t e r n s  of t h e  E-M problem w i l l  i n -  
c r e a s i n g l y  d e v i a t e  from t h e  "Keplerian" p a t t e r n s  a s  t h e  s tudy  
moves toward smaller v a l u e s  of  t h e  J a c o b i  c o n s t a n t  C ,  t h e  refer-  
ence t o  t h e  p a t t e r n s  of  Kepler o r b i t s  w i l l  prove t o  be a very  
convenient  handle  f o r  g e t t i n g  d e s c r i p t i v e l y  hold  of t h e  p a t t e r n s  
of E-M f l i g h t .  

1 5  
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YR E PERI( 

L 

5 . 0  

KEPLER ORBIT ,  C =  4.0; CLASS PI 
X, = 4 . 8 0 0 .  Y, = 0.000 
k, = 0.000; Y, = - 4 . 4 1 0 9 7  

TIME S H O W N :  32.56 

Figure 22 

5.0 = 
XR 

KEPLER ORBIT> C z 4 . 0 ;  CLASS PI 
X R  = 6.200; YR = 0.000 
X, = 0,000; 9 ,  = - 5 . 8 9 5 9 8  
TIME S H O W N ,  38.57 

Figure 23 

E-M-ORBITS OF J A C O B 1  CONSTANT C = 4 . 0 0  

With t h e  v a l u e  of  t h e  J a c o b i  c o n s t a n t  C as h i g h  as 4 . 0 0 ,  
t h e r e  i s  s t i l l  a c l o s e  s i m i l a r i t y  o f  o r b i t s  o f  t h e  E-M problem t o  
t h o s e  o f  t h e  Kepler  o r b i t s  i n  r e g i o n s  where t h e y  can be compared. 
There i s ,  o f  c o u r s e ,  a t h i r d  r e g i o n ,  i . e . ,  t h e  l u n a r  r e g i o n ,  f o r  
t h e  E-M problem. 

O r b i t s  o f  t h e  t e r r e s t r i a l  r e g i o n  are f i r s t  shown f o r  s h o r t -  
t i m e  h i s t o r i e s  on F i g u r e s  2 4  t o  2 6  f o r  t h e  t h r e e  classes of  pro-  
g r a d e ,  ambigrade, and r e t r o g r a d e  o r b i t s .  Aside from t h e  s l i g h t  
s h i f t  t h a t  i s  caused  by t h e  change i n  p o s i t i o n  o f  t h e  m a s s ,  a 
d e v i a t i o n  from t h e  cor responding  Kepler  f i g u r e s  i s  h a r d l y  recog-  
n i z a b l e .  

The s i m i l a r i t y  between t h e  two problems f o r  t h i s  r e g i o n  i s  
confirmed by t h e  examples of  long-t ime h i s t o r i e s  t h a t  are shown 
on t h e  n e x t  f i v e  g raphs .  The f i r s t  f o u r  o f  them, F i g u r e s  2 7  t o  
3 0 ,  concern t h e  prograde  c lass .  The sequence i s  a r r anged  so  as 
t o  b r i n g  o u t  t h e  c o n t r a c t i o n  t h a t  o c c u r s  i n  t h e  wid th  o f  t h e  
r ing-shaped area i n  which each  o r b i t  moves. 
t r a c t i o n  ends w i t h  t h e  fo rma t ion  o f  a s i n g l e - l o o p  o r b i t ,  c a l l e d  
" c e n t r a l "  f o r  obvious  r e a s o n s .  I t s  d e v i a t i o n  from a c i r c u l a r  
shape i s  h a r d l y  d e t e c t a b l e  by v i s u a l  i n s p e c t i o n .  (Note t h a t  t h e  
meaning of t h e  t e r m  " c e n t r a l "  i s  n o t  c o i n c i d i n g  w i t h  t h a t  used i n  
Danby's book FUNDAMENTALS OF CELESTIAL MECHANICS.)  

The c lass  of  r e t r o g r a d e  o r b i t s  o f  t h e  t e r r e s t r i a l  r e g i o n  i s  
r e p r e s e n t e d  by t h r e e  l o n g - h i s t o r y  o r b i t s  (F igu re  3 1 ) .  Th i s  t i m e  
r e c o u r s e  w a s  t a k e n  t o  superimposing a l l  t h r e e  o r b i t s  on each  
o t h e r  t o  b r i n g  o u t  t h e  phenomenon o f  c lass  development by c o n t r a c -  
t i o n ,  s t a r t i n g  from t h e  c o l l i s i o n  o r b i t  and end ing  w i t h  a c h i e v i n g  
t h e  ' ' c e n t r a l "  o r b i t  o f  r e t r o g r a d e  s e n s e  o f  motion. 

The p r o c e s s  of con- 
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c E - M  CRBtT? OF JACOB1 
CLASS I :ORBITS OF 
WITH PROGRADE MOTION AT APSES L 

Figure 24 

__ ~ - L E-M ORBITS - _ -  OF JACOB1 

Figure 25 
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r E 7 O R B l T S  OF JACOB1 CONSTANT C = 4.0 

CLASS III: ORBITS OF TERRESTRIAL REGION 
W I T H  RETROGRADE MOTION AT APSES 

Figure 26 

E-M ORBIT OF JACOB1 CONSTANT C = 4 . 0 '  

CUSPING ORBIT @ OF ORBIT CLASS I 
I 

I 
Figure 27 Figure 28 

For the ambigrade class, which also is quite similar to its 
Kepler-model, the showing of long-time history orbits was dis- 
pensed with. 
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[ E-M ORBIT OF JACOBI CONSTANT- 

I ORBIT OF CLASS I 

Figure 29 

t E-M ORBIT OF JACOB1 

[ CENTRAL ORBIT @ OF 

Figure 30 

E-M ORBITS OF JACOB1 

[ ORBITS @,@,@ OF O R B I T  C L A S S  IU 

Figure 31 
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The behavior of the E-M orbits of the outer region of motion 
for C = 4.00 is represented on Figures 32 to 34. These figures 
closely resemble the corresponding figures of Kepler Motion. 

t yR 

E - M  ORBITS OF JACOB1 CONSTANT C.4.0 
CLASS E: OUTER REGION ORBITS 

WITH PROGRADE MOTION A T  APSES 

Figure 32 

It may be mentioned that the terminology of conic sections 
cannot truly be applied to E-M orbits, for which reason the infor- 
mation is given in terms of "bounded" and "escaping". The isola- 
tion of orbits that represent- the border between bounded and es- 
caping orbits is not straightforward. This will become clearer 
when outer orbits will be discussed on the next lower C-level. 

For the class of bounded orbits, one observes the existence 
of a central orbit. 

The succeeding three figures, Figures 35 to 37, are con- 
cerned with motion in the lunar region. To appreciate the behavior 
of the orbits, one has to be aware that the diameter of the lunar 
region is not larger than 0.05 units, and that the consequent 
closeness of the motion to the lunar mass causes very short 
periods of revolution. The comparatively slow revolution of the 
moon about the origin then effects a slow "backward walking" of 
the loops. 

20 
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Figure 33 

t yR 

_______.- - 
L k M  ORBITS OF 

I__ ~- 

Figure 34 
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r E - R I I O R B l T S  OF JACOB1 CONSTANT C = 4 . O  
I v S % K :  LUNAR REGION ORBITS 

I W ITW PROGRADE MOTION 

Figure 35 

The  s a m e  f a c t  i s  a l s o  r e s p o n s i b l e  f o r  t h e  scanty-only  ap- 
pearance  o f  ambigrade o r b i t s  i n  t h e  l u n a r  r e g i o n  o f  C = 4 . 0 0 .  
They w i l l  n o t  be d i s c u s s e d  f o r  t h i s  C-level .  (This  i s  c o n s i s t e n t  
w i t h  m a i n t a i n i n g  a c e r t a i n  g r i d  s i z e  i n  t h e  s u r v e y . )  

R e p r e s e n t a t i o n s  o f  t h e  l u n a r  p rograde  and r e t r o g r a d e  classes 
are g iven  on F i g u r e s  35 and 37 .  Geomet r i ca l ly  t h e  o r b i t s  " B " ,  
'IC" and i 'D" of F i g u r e  35 resemble o r b i t s  "F" ,  'IG", and "H" o f  
F i g u r e  37,  b u t  t h e  motion on t h e  second group i s  o p p o s i t e  t o  t h a t  
on t h e  f i r s t  group,  

F igu re  36 d i s p l a y s  a g a i n  o r b i t s  A ,  B ,  C of F igu re  35 ,  b u t  t o  
much l a r g e r  p e r i o d s .  Th i s  i s  done t o  demonst ra te  t h a t  t h e  p r i n -  
c i p l e  of c o n t r a c t i o n  toward a c e n t r a l  o r b i t  h o l d s  a l s o  h e r e  q u i t e  
w e l l .  

2 2  
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E - M  ORBITS OF JACOB1 CONSTANT _ _  
ORBITS O F  CLASS VI1 SHOWN FOR 

EXTENDED T I M E  PERIODS 
___ 

Figure 36 

This  l a s t  graph  i s  s i g n i f i c a n t  f o r  a n o t h e r  r eason .  I t  g i v e s  
t h e  f i r s t  demonst rab le  s i g n  of a behav io r  d i f f e r e n t  from Kep le r i an .  
Th i s  i s  observed on o r b i t  "A"  and i . e . ,  on t h e  p a t t e r n s  of t h e  
aposelenum p o i n t s .  A t  O o  and a t  180°, as  measured from t h e  Moon 
p o s i t i v e  upward from t h e  p o s i t i v e  XR-axis, t h e  p o i n t s  a re  cusps :  
w i t h  approaching  minus 9 0 °  t h e s e  a p s e s  become more rounded. 

A s  one p r o g r e s s e s  t o  l e v e l s  o f  s m a l l e r  J a c o b i  c o n s t a n t s ,  t h e  
d e v i a t i o n s  from a symmetr ica l  p a t t e r n  d i s t r i b u t i o n  become more 
pronounced. 

2 3  
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E-M ORBITS OF JACOBI CONSTANT C s 4 . 0  

CLASS LUNAR REGION ORBITS 
WITH RETROGRADE MOTION 

J 
I 

1 J 

Figure 37 

E-M-ORBITS OF J A C O B I  CONSTANT C = 3.20388 2 C ( L 1 )  

The r eason  f o r  s e l e c t i n g  t h e  v a l u e  o f  C = 3.20388 as n e x t  i n  
l i n e  of  t h e  levels  t o  be s t u d i e d  i s  t h e  occur rence  o f  f i r s t  con- 
t a c t  between t h e  t e r r e s t r i a l  and t h e  l u n a r  r e g i o n .  The geometry 
o f  t h e  boundary l i n e s  f o r  t h i s  l eve l  i s  shown on F igure  38. 

The procedure  o f  i n v e s t i g a t i o n  i s ,  i n  g e n e r a l ,  t h a t  o f  t h e  
former c h a p t e r  though t h e  o r d e r  i n  which t h e  classes o r  o r b i t s  
are  d i s c u s s e d ,  w i l l  be d i f f e r e n t .  

ORBITS OF THE TERRESTRIAL R E G I O N  

The r e t r o g r a d e  c lass  o f  t h e  t e r r e s t r i a l  r e g i o n  w i l l  be 
s t u d i e d  f i r s t .  I t  i s  r e p r e s e n t e d  on F i g u r e  39  i n  t h e  f a s h i o n  o f  
t h e  former ly  used overv iews ,  g i v i n g  a series o f  s h o r t - p e r i o d  t i m e  
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SHADED AREA IS EMPTY 
OF ORBITS OF JACOB1 CONSTANT C 0 3 . 2 0 3 8 8  
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Figure 38 

~ ORB ITS OF J A C O B l C O " T C = - 3 . 2 0 3 8 8  
CLASS OF ORBITS IN TERRESTRIAL REGION 

WITH RETROGRADE MOTION AT APSES 

______ I 
Figure 39 
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h i s t o r i e s .  Th i s  graph s e r v e s  a l s o  t o  b r i n g  t h e  s i z e s  of t h e  
o r b i t s  i n t o  p e r s p e c t i v e  wi th  t h a t  o f  t h e  border-curve of  t h e  ter-  
r e s t r i a l  r e g i o n .  Longer-time h i s t o r i e s  of s e l e c t e d  o r b i t s  of 
t h i s  class a r e  then  p r e s e n t e d  i n  t h e  fo l lowing  sequence of s i x  
graphs  (F igu res  4 0  t o  4 5 ) .  Again t h i s  class i s  c l e a r l y  d e f i n e d  
by t h e  c o l l i s i o n  o r b i t  on one end of t h e  development and t h e  
r e t r o g r a d e  c e n t r a l  o r b i t  on t h e  o t h e r  end. 

I I I tYR 

E.M OREIT OF JACOBI CONSTANT C=3 .20388  I 
COLLISION ORBIT @ OF R E T R O G R A D E  CLASS 

TIME SHOWN 7 . 2  

Figure 40 

t 

E.M. ORBIT OF JACOB1 CONSTANT ~ 3 . 2 0 3 8 8  

RETROGRADE ORBIT THROUGH I X R = O . ~ ; Y ~ * O )  
TIME SHOWN, 23,O 

Figure 42 

OF JACOBI CONSTANT C: 3 . 2 0 3 8 8  

RETROGRADE ORBIT THROUGH ( X R = O . ~ , Y ~ = O )  , 
TIME SHOWN 15.0 

Figure 41 

1 

0.5 - - 
XR 

RETROGRAOE ORBIT THROUGH ( X R = O . ~ B ; Y ~ = O )  

Figure 43 

A t t e n t i o n  i s  drawn t o  t h e  o r b i t s  on F igu res  4 2  and 4 3 .  The 
second of t h e s e  i s  p e r i o d i c ,  and t h e  f i r s t  of them can be looked 
upon a s  a p e r t u r b a t i o n  t o  t h e  p e r i o d i c  one. The behavior  o f  t h e  

26 



-0.5 

+ 
E.M-ORBIT OF JACOel CONSTANT 

RETROGRADE ORBIT THROUGH lXR=0.30;YR=O) i -  TIME SHOWN: 13.0 

i l-0.5 i 
EM. ORBIT OF JACOB1 CONSTANT C i  3.20388 

CENTRAL ORBIT OF RETROGRADE CLASS 
X ~ = 0 . 2 2 6 1 ;  YR'O.  PERIOD P ; 0 . 6 6 0  3 

Figure 44 Figure 45 

perturbed orbit will be called "Keplerian", since the cycles, of 
which nearly three are shown, follow each other in regular and 
one-directional sequence. This is mentioned here, since soon 
perturbations will be encountered that exhibit different patterns. 

The retrograde class is again represented on Figure 46, this 
time in superposition of three orbits. The dashed curve here 
represents the central orbit. 

The prograde class of the terrestrial region is taken up 
next. Its-short-period synopsis is exhibited on Figure 47. It 
is noticed that the prograde central orbit has considerably lar- 
ger dimensions than its retrograde counterpart. To set this con- 
trast out still stronger, the two central orbits are shown to- 
gether on Figure 48. (For a comprehensive treatise on those 
orbits that are here listed as central, the reader is referred to 
Ref. 6 . )  

What follows now is the stepwise development of the prograde 
class, beginning with the central orbit on Figure 48. While the 
initial position of an orbit is pushed successively further out 
along the positive XR-axis, the belt-shaped area of its orbital 
motion widens out consistently. The terminal orbit of this se- 
quence (Figures 49 to 55) starts quite close to the point where 
the terrestrial and the lunar region meet. This orbit is pursued 
for a time period of 120 units, which corresponds to a time of 
about 17 months. On this same picture, the central orbit is 
superimposed for comparison. 

In this group the reader will take notice of two features in 
which the orbits deviate from Keplerian orbits; i.e., first, in 
the overall shapes of the orbits which accommodate to the shape 
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I E.M. ORBIT OF JACOB1 CONSTANT C = 3 . 2 0 3 8 8  

THREE RETROGRADE ORBITS OF TERRESTRIAL I R E G I O N  

Figure 46 

of t h e  zero-veloci ty  curve; and secondly,  i n  t h e  seeming d i s -  
o rde r  t h a t  appears i n  t h e  placement as w e l l  as shapes of t h e  
apogees of an o r b i t .  The f i r s t  of t h e s e  f e a t u r e s  p o i n t s  t o  t h e  
proximity ( i n  t h e  C-level development) of  o r b i t s  t h a t  commute 
between t h e  t e r r e s t r i a l  and luna r  reg ions .  The second f e a t u r e  i s  
c l o s e l y  connected with t h e  "fly-by" phenomenon. This phenomenon 
w i l l  be seen  t o  in f luence  t h e  shape of  o r b i t s  i n  o t h e r  c l a s s e s  of 
t h i s  C-level and i . e . , t o  a s t ronge r  measure t h a n  seen  here. 

For t h e  ambigrade c l a s s  of t h e  t e r r e s t r i a l  region of C = 4 . 0 ,  
t h e  short- t ime overview i s  presented on Figure 5 6 .  
o r b i t s  are shown t h a t  s t a r t  i n  r e t rog rade  d i r e c t i o n  from the  
p o s i t i v e  XR-axis a t  p o i n t s  t h a t  i nc rease  i n  d i s t ance  from t h e  
o r i g i n .  

H e r e  seven 
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E.M.  O R B I T S  OF JACOB1 C O N S T A N T  C =  3.20388 
C L A S S  OF O R B I T S  I N  T E R R E S T R I A L  R E G I O N  

W I T H  P R O G R A D E  M O T I O N  AT A P S E S  

Figure 47 

1 E.M. ORBITS OF JACOBI 
CENTRAL ORBITS OF 

Figure 48 
2 9  
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E.M. ORBIT OF JACOB1 CONSTANT C.3.20388 I I PROGRADE ORBIT THROUGH (Xn.0.570; Yn.01 I 
1 " I TIME SHOWN 8 39.j.e 

Figure 49 

t yR 

PROGRADE ORBIT THROUGH ( X ~ = 0 . 7 0 0 ;  YR=O) 
TIME SHOWN, 26.20 

Figure 51 

E.M. ORBIT OF JACOB1 CONSTANT C.3.20388 

PROGRADE ORBIT THROUGH ( X ~ = 0 . 6 3 0 ;  Y ~ ' 0 1  
TIME SHOWN, 50.0 

I 

Figure 50 

~ Y R  I CENTRAL ORBIT I 

I - 1 -  I 
E.M. ORBITS OF JACOBI CONSTANT C = ~ . ~ O S B B  

SUPERPOSITION OF CENTRAL PROGRADE ORBIT 
AN0 PROGRADE ORBIT THROUGH ( X ~ * 0 . 7 5 0 ;  YR=O) 

TIME SHOWN. 100 2 

Figure 52 

EM. ORBIT OF JACOB1 CONSTANT C.3.20388 1 
PROGRADE ORBIT THROUGH IXR.O.~BO;YR'OI 

TIME SHOWN 8 69.84 

E.M. ORBIT OF JACOB1 CONSTANT C* 3.20588 1 
PROGRADE ORBIT THROUGH (XR' 0.803; YR'O) 

PERIODS 14.0 

30  Figure 53 Figure 54 



I 

-i-- I I I 

- _ _ _ _ _ -  

[ E.M. ORBITS O F  JACOB1 CONSTANT C = 3 . 2 0 3 8 8  
I 1 

SUPERPOSITION OF CENTRAL PROGRADE ORBIT 

TIME SHOWN: 120.0 
AND PROGRADE ORBIT WITH ( X ~ = 0 . 8 3 ;  Y R = O )  

Figure 55 

Attention of the reader is here directed to the fact that the 
orbits which originate furthest out, do not regain their retro- 
grade sense of motion, when they encounter their second apogee. 
As the figure demonstrates, orbit "K" is cusping and orbit "L" is 
prograding at the second apogee occurrence. 
will soon be discussed in more detail. 

This orbital behavior 

The following three figures, Figures 57  to 59, represent the 
first examples concerned with probing directional effects, inso- 
far as all orbits depicted originate at the same isotach, but at 
varied positions along the isotach. The problem can be formulated 

3 1  



I 1 i i 

E.M. ORBITS OF JACOB1 CONSTANT C = 3.20388 ] 
~~~ ~ 

C L A S S  OF ORBITS IN T E R R E S T R I A L  REGION 
W I T H  A M B I G R A D E  MOTION AT APSES 

Figure 56 

as fo l lows :  I f  t h e  o r b i t  d e p a r t u r e  i s  a t  t h e  ze ro -ve loc i ty  curve  
(and t h e r e f o r e  i s  i n  form of a c u s p ) ,  w i l l  t h e  succeeding apogee 

be a cusp? I f  n o t ,  toward which d i r e c t i o n  w i l l  t h e  succeeding 
apogee change? For t h e  p r e s e n t  C- leve l ,  t h e  t h r e e  f i g u r e s  pro- 
v i d e  t h e  answers:  

(1) I f  bo th  ( f i r s t  and second)  ap0gee.s o f  an o r b i t  a r e  f a r  
away from t h e  moon ( say  h a l f  an E-M d i s t a n c e ) ,  cusps indeed map 
i n t o  cusps .  This  i s  demonstrated on F igu re  5 7 .  

( 2 )  O r b i t s  t h a t  have t h e i r  a r r iva l - apogee  s h o r t l y  ahead, and 
a t ,  t h e  p o s i t i v e  XR-axis,  expe r i ence  a change of apogee c h a r a c t e r i s -  
t i c s  from cusps toward apogees of more r e t r o g r a d e  motion. T h i s  i s  
v i s i b l e  on o r b i t s  "3", " 4 " ,  and "5"  of  F igu re  58 .  

( 3 )  With o r b i t s  t h a t  d e p a r t  from p o i n t s  t h a t  t r a i l ,  o r  a r e  
a t ,  t h e  p o s i t i v e  XR-axis, t h e  d e p a r t i n g  cusps a r e  mapped i n t o  
apogees of  more prograde  motion. T h i s  i s  r ecogn izab le  on o r b i t s  
"5"  and " 6 "  of  F igu re  5 9 .  
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ZERO-V C U R V E  
I N N E R  B R A N C H  

' I  \ 

[ E. M. O R B I T S  OF JACOB1 C O N S T A N T  I O R B I T S  THROUGH P O I N T S  OF THE ZERO-V C U R V E  

Figure 57 

The mapping c h a r a c t e r i s t i c s  of ( 2 )  and ( 3 )  correspond t o  t h e  
p r i n c i p l e  of r e f l e c t i o n  on t h e  XR-axis, v a l i d  f o r  t h e  p r e s e n t  
problem. 

The e f f e c t  t h a t  comes t o  l i g h t  i n  t h e s e  three p i c t u r e s  i s ,  
of c o u r s e ,  a t t r i b u t a b l e  t o  t h e  presence  of t h e  Moon, and can - 
popu la r ly  speaking  - be cons ide red  a s  one  form of  "f ly-by e f f e c t " .  
S h o r t l y  an  o r b i t  w i l l  be d e p i c t e d  i n  which t h i s  e f f e c t  i s  u t i l i z e d  
i n  two d . i r e c t i o n s .  

For o r b i t s  t h a t  o r i g i n a t e  on i s o t a c h s  o t h e r  t han  t h e  zero- 
v e l o c i t y  cu rve ,  these f ly-by  e f f e c t s  d i m i n i s h ,  and i . e . ,  t h e  
more, t h e  f u r t h e r  t h e  i s o t a c h  i s  reinoved from t h e  border-curve.  

There a r e  several o t h e r  i n t e r e s t i n g  f e a t u r e s  t h a t  are pecu- 
l i a r  t o  t h e  class of  ambigrade o r b i t s .  
are obse rvab le  on t h i s  C- l eve l ,  a r e  symptomatic f o r  t h e  l o w e r  
C- l eve l s ,  they  w i l l  h e r e  be in t roduced  and d i s c u s s e d  t o  s o m e  
d e t a i l  i n  t h e  cour se  of d i s c u s s i n g  i n d i v i d u a l  o r b i t s  of t h i s  class.  

S ince  t h e  phenomena, t h a t  

3 3  



I 
D E P A R T U R E S  

I N N E R  B R A N C H  

E.M. O R B I T S  OF JACOB1 C O N S T A N T  C = 3.20388 1 
1 

O R B I T S  THROUGH P O I N T S  OF T H E  ZERO-V CURVE I 

Figure 58 

E.M. ORBITS OF JACOB1 CONSTANT C =  3.20388 I 
ORBITS THROUGH POINTS OF THE ZERO-V CURVE1 

Figure 59 
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An i n t e r e s t i n g  d e v i a t i o n  from t h e  r e g u l a r  l e a f - d i s t r i b u t i o n ,  ~. - 

proper  t o  Kepler o r b i t s ,  may be observed on t h e  o r b i t  of F igu re  
6 0 .  This  o r b i t  (which i s  very  c l o s e  t o  a p e r i o d i c  one)  shows a 
dense r  l e a f - p a t t e r n  i n  t h e  a x i a l  d i r e c t i o n s  than  i n  t h e  spaces  
between. 
n o t  f a r  from a c o l l i s i o n  o r b i t .  

This  o r b i t  i s  i n i t i a t e d  a t  (XR = -0 .74:  YR = 0 )  and i s  

t yR 

~ 
~ 

E.M. ORBIT OF JACOB1 CONSTANT C = 3 . 2 0 3 8 8  

TIME SHOWN: 38.27 

.. 

AMBIGRADE ORBIT THROUGH (XR=-0.74; YR.0) 

. __ 

Figure 60 

The p r o g r e s s i o n  of o r b i t s  w i l l  now fo l low an i n c r e a s e  of t h e  
i n i t i a l  p o i n t  toward l a r g e r  n e g a t i v e  v a l u e s  on t h e  XR-axis: The 
o r b i t s  on F igu res  6 1  and 6 2  a r e  i n i t i a t e d  a t  XR = - 0 . 7 6 0  and 
-0 .770 .  The f i r s t  of t h e s e  i s  nea r  a p e r i o d i c  o r b i t  t h a t  e x h i b i t s  
seven l e a v e s .  The second of  t h e s e  i s  shown f o r  c o n t i n u i t y  r easons .  

I f  t h e  i n i t i a l  p o i n t  i s  moved a sma l l  d i s t a n c e ,  i . e . ,  t o  t h e  
v a l u e  of ( X R  = - 0 . 7 7 2 ,  YR = 0 ) ,  an o r b i t  i s  gene ra t ed  t h a t  ex- 
h i b i t s  t h e  f ly-by  e f f e c t  and a s s o c i a t e d  p a t t e r n  changes very  
s a t i s f a c t o r r l y .  
f i r s t  shows t h e  t o t a l  o r b i t ,  which f o r  p r a c t i c a l  purposes  can be 
taken  as p e r i o d i c ,  w i th  t h e  t i m e  p e r i o d  of 4 4 . 4  u n i t s .  
occu r s  wi th  t h e  apogee "A" and la te r  a g a i n  w i t h  t h e  apogee 'IQ", 

which i s  symmetr ica l ly  l o c a t e d  t o  " A " .  The e f f e c t  of t h e  two 

- _. ~ 

The o r b i t  i s  shown on F igu res  6 3  t o  65. The 

The f ly-by  
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E. M. O R B I T  OF JACOB1 CONSTANT C = 3.20388 

T I M E  SHOWN I 60.0 
AMBIGRADE O R B I T  THROUGH ( X R  =-0.760; YR= 0) I 

E. M. ORBIT OF JACOB1 CONSTANT C = 3.20388 I 
AMBIGRADE ORBIT THROUGH ( X ~ = - 0 . 7 7 2 ; Y ~ ~ 0 ;  8,=W) 

TIME SHOWN: 44.4 1 

E.M.  O R B I T  OF JACOB1 CONSTANT C =  3.20388 

T I M E  SHOWN: 60.0 
AMBIGRADE ORBIT THROUGH (X~=-0 .770;  Y R =  0) 

Figure 63 
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fly-bys on t h e  o r b i t  i s  brought i n t o  clearer perspec t ive  on t h e  
two fol lowing f i g u r e s .  On Figure 6 4  one follows t h e  o r b i t  
through f i v e  apogees of nea r ly  equal  shape, till "A" i s  reached. 
Succeeding t h i s  occurrence,  t h e  apogee loop i s  cont rac ted  t o  
nea r ly  a cusp, he re  l abe led  "B". The next  f i g u r e ,  Figure 6 5 ,  
resumes t h e  o r b i t  h i s t o r y  a t  "A" and traces it  till t h e  mirror-  
image a t  "Q" i s  reached. AI1 apogee-events between "A" and "Q" 
are,  indeed, occur r ing  i n  shapes t h a t  are c l o s e  t o  a cusp. 

Figure 64 Figure 65 

The decomposition of t h e  f u l l  o r b i t  i n t o  two well-chosen 
p a r t s  demonstrates a l s o  t h a t  an orb i ta l .  behavior can f r equen t ly  
be b e t t e r  understood i f  t h e  o r b i t  i s  proper ly  d i s sec t ed .  

behavior ,  which reminds of t h e  behavior of an undamped pendu1;m 
(Figures 6 6  t o  7 0 ) .  Reference may f i r s t  be taken t o  Figure 67 .  
I t  i l l u s t r a t e s  a th ree - l ea f  p e r i o d i c  o r b i t .  The fou r  o r b i t s  on 
t h e  remaining fou r  graphs a r e  o r b i t s  t h a t  are i n i t i a t e d  a t  XR- 
values  q u i t e  c l o s e  t o  t h a t  of t h e  r e fe rence  o r b i t .  These fou r  
o r b i t s  may, i n  f a c t ,  be considered as, per tu rba t ions  t o  t h e  r e f e r -  
ence o r b i t .  The behavior of t h e  fou r  o r b i t s  i s  uniform, i n  t h a t  
they a l l  e x h i b i t  pendulum motions of t h e i r  apogees about t h e  
apogee p o s i t i o n s  of t h e  re ference  o r b i t .  For t h e  convenience of 
t h e  r eade r ,  t h e  apogee events  are numbered i n  sequence of t h e i r  
occurences on two of t h e  o r b i t s .  

The succeeding f i v e  o r b i t s  d i sp l ay  a p a r t i c u l a r  s t a b i l i t  

The o r b i t  of t h e  l a s t  of t h e  f i v e  graphs te rmina tes  t h e  f i r s t  
sequence of ambigrade o ' rb i t s ,  i n s o f a r  as i t s  i n i t i a l  condi t ion  is 
a t  t h e  zero-veloci ty  curve (X, = - 0 . 7 8 2 4 0 4 :  YR = 0 ) .  

. . ... .. . . ~ 
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E.M. ORBIT OF JACOB1 CONSTANT C.3.20388 

TIME SHOWN: 50.10 
THROUGH ( X R = - O . ~ ~ O ; Y R = O )  

I 

E. M. ORBIT OF JACOB1 CONSTANT C = 3 . 2 0 3 8 8  

AMBIGRADE ORBIT THROUGH (X~=-0 .78106;  YR = O )  
PERIOD: 6.255 

Figure 66 

t yR 

Figure 67 

4 yR 

E.M. ORBIT OF JACOB1 CONSTANT C = 3.20388 

AMBIGRADE ORBIT THROUGH (XR'-0.7815; YR=O) 
T I M E  SHOWN' 50.08 

Figure 68 
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E.M. ORBIT OF JACOB1 CONSTANT C =  3 . 2 0 3 8 8  

T IME SHOWN I 50.05 
AMBIGRADE ORBIT THROUGH ( X ~ " 0 . 7 8 2 0 ;  YR= 0) 

Figure 69 



~ ~~ 

E.M. ORBIT OF JACOB1 CONSTANT C.3.20388 

TIME SHOWN: 50.0 
AMBIGRADE ORBIT THROUGH ( X ~ = - . 7 8 2 4 0 4 ;  YR=O 

Figure 70 

The p o i n t s  of o r b i t  i n i t i a t i o n  a r e  n e x t  chosen on t h e  pos i -  
t i v e  branch of  t h e  XR-axis. 

i n  t h e  sense  of Kepler ian  behavior .  F i g u r e s  72 and 73  d e p i c t  
i d e n t i c a l  o r b i t s ,  shown, however, f o r  d i f f e r e n t  t i m e s .  They 
r e p r e s e n t  ano the r  example of pa t te rn-changes  due t o  f ly-by  which 
occur s  wi th  t h e  apogee l a b e l e d  1 9 .  

F igu re  7 1  g i v e s  an example of a r a t h e r  well-behaved o r b i t ,  

The o r b i t s  on t h e  remaining f o u r  f i g u r e s ,  F i g u r e s  74  t o  7 7 ,  
s e r v e  w e l l  t o  expose a s t a b i l i t y  behavior  t h a t  i s  s t r i k i n g l y  d i f -  
f e r e n t  from t h a t  d iFcussed  be fo re .  
aga in  a t h r e e - l e a f  o r b i t  (F igure  7 5 ) .  Very s m a l l  v a r i a t i o n s  are 
then  made i n  t h e  i n i t i a l  XR-value. The e f f e c t  i s  a b r i e f  s t a y  of 
t h e  o r b i t  i n  t h e  neighborhood o f  t h e  r e f e r e n c e  o r b i t ,  fol lowed by 
a r a p i d  sp read ing  of  t h e  apogee e v e n t s  i n t o  o t h e r  d i r e c t i o n s .  

The r e f e r e n c e  o r b i t  i s  h e r e  

The comparison of t h i s  group wi th  t h e  group of  o r b i t s  shown 
around t h e  o r b i t  of F i g u r e  67 p o i n t s  toward t h e  s i g n i f i c a n c e  of 
t h e  al ignment  of an o r b i t  as a c r i t e r i o n  fo r  i t s  s t a b i l i t y  
behavior .  
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-7 
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7 

E.M. ORBIT OF JACOB1 CONSTANT C =  3.20388 

PERIOD P=  18.92 
AMBIGRADE ORBIT THROUGH (XR80.750;  Y R ~ O )  

- 0.5 

0 

CHANGE OF 
PATTERN 

tYR I 

t yR f Y R  

CHANGE OF 
PATTERN 

E. td. O R B I T  OF JACOB1 C O N S T A N T  C =  3.20388 

T I M E  S H O W N :  41.5 
AMBIGRADE ORBIT  THROUGH ( X ~ ~ 0 . 7 9 0 ;  YR=O) 

Figure 72 Figure 73 
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0.5 k 6; 
yR 

I. 5 

h-2 
i-- 
(3.5 ._ 

AMBIGRADE ORBIT THROUGH AMBIGRADE ORBIT THROUGH ( X ~ ' 0 . 7 9 0 2 6 ;  Y,=O) 

Figure 74 

t" 
- -7 

I E.M. ORBIT OF JACOB1 

I AMBIGRADE ORBIT 

- -  I I  T I M E  SHOWN1 50.03 

Figure 75 

_ _ _ .  

E.M. O R B I T  OF JACOB1 CONSTANT?= __ 3.20388 
AMBIGRADE ORBIT THROUGH ( X ~ = 0 . 7 9 0 4 0 ;  YR =O) 

T I M E  SHOWN I 50.08 
- 

Figure 76 Figure 77 
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ORBITS OF THE LUNAR R E G I O N  
THE CLASSES OF RETROGRADE AND PROGRADE LUNAR ORBITS 

E.M. ORBIT OF JACOB1 CONSTANT C.3 .20388 

(X, = 1.031, YR = 0); PERIOD: 0.475 

E.M. ORBIT OF JACOB1 CONSTANT C.3.20388 

TIME SHOWN: 6.16 
CENTRAL ORBIT OF RETROGRADE CLASS RETROGRADE ORBIT THROUGH ( X R = 1 . 0 4 0 ;  Y R . 0 )  

- 

The o r b i t s  of  t h e  l u n a r  r e t r o g r a d e  class show r a t h e r  r e g u l a r  
Kepler ian  p a t t e r n s .  Four examples of t h i s  are paraded on F i g u r e s  
78 t o  81. Th i s  series starts w i t h  t h e  c e n t r a l  o r b i t  and fo l lows  
wi th  o r b i t s  of  i n c r e a s i n g  be l t -wid th .  A s u p e r - p o s i t i o n  of  t h r e e  
of t h e s e  o r b i t s  i s  i l l u s t r a t e d  on F i g u r e  82 .  The c o l l i s i o n  o r b i t ,  
which t e r m i n a t e s  t h e  sequence of r e t r o g r a d e  o r b i t s ,  w i l l  be shown 
and d i s c u s s e d  l a t e r .  

t y R I  

Figure 78 Figure 79 

I n  t r a n s i t i o n  t o  t h e  prograde l u n a r  c lass  t h e  c e n t r a l  o r b i t s  
of  t h e  r e t r o g r a d e  and prograde c l a s s  are d i s p l a y e d  t o g e t h e r  on 
F igure  83. The lops idedness  of t h e  prograde  c e n t r a l  o r b i t  as w e l l  
as i t s  s i z e  are i n  marked c o n t r a s t  t o  t h e  a lmost  c i r c u l a r  and 
symmetr ical ly  p l aced  c e n t r a l  o r b i t  o f  r e t r o g r a d e  d i r e c t i o n .  A s  t o  
t h e  p o s s i b i l i t y  of  g e n e r a t i n g  an " a r t i f i c i a l "  symmetr ical  p rograde  
c e n t r a l  o r b i t ,  a sugges t ion  i s  o f f e r e d  s h o r t l y  i n  t h i s  c h a p t e r .  

The l u n a r  class of prograde o r b i t s  i s  then  b u i l t  up from t h e  
c e n t r a l  o r b i t  t o  t h e  more complicated forms i n  a sequence of  
seven f i g u r e s ,  F i g u r e s  84 t o  90 .  A s  t o  t h e  f i r s t  f i g u r e  of t h i s  
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L 

YR 

I t t - - !  t 

I l l 1  
-_ -~ 

RETROGRADE ORBIT 
L ORBIT OF JACOB1 CONSTANT C.3.20388 

TIME SHOWN: 15.0 

Figure 80 Figure 81 

RETROGRADE ORBIT THROUGH : X ~ = 1 . 0 5 5 ;  YR = O )  

I 

j E,M. OR;T O F F O B I  CONS TAN^(.^.^^..) 
THREE RETROGRADE ORBITS OF LUNAR 

REGION 
- - ~ - -  - 

Figure 82 
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 INNER BRANCHI 

I 

E.M. ORBIT OF JACOB1 CONSTANT C.3.20388 

TWO CENTRAL ORBITS IN LUNAR REGION 
I 
I 

Figure 83 

I E.M. ORBIT OF JACOB1 CONSTANT C.3.20388 I 
I THREE CENTRAL PROGRADE ORBITS IN LUNAR 
I REGION XR'1.01750 XR'1.01814 XR= 1.01872 

Figure & 
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series (Figure 84), it is worthwhile to notice that this class 
has indeed three prograde single-loop orbits which are in close 
neighborhood to each other. The development of the series then 
follows first a horizontal expansion, while the expansion toward 
the vertical direction develops only gradually. Three figures of 
the series (Figures 87 to 89) show a central orbit superimposed 
to the current orbit. 

I I 

I E.M. ORBIT OF JACOB1 CONSTANT C =  3.20388 1 

i 
'? 

I PROGRADE ORBIT THROUGH ( X R =  1 . 0 2 2 ; Y ~ = O )  I T I M E  SHOWN: 15.01 

Figure 85 

In connection with a possible generation of a symmetrical 
prograde orbit, the reader's attention is drawn to the very first 
loop of the orbits on Figures 86 to 88. These are almost closed 
loops, with the "best" case occurring on the orbit of Figure 87. 
For clearer demonstration the first loop of this orbit is shown 
isolated on Figure 91. It is intelligible that by low thrust 
propulsion or small impulses this orbit can be changed to one 
that closes on itself. This orbit then would also be centered 
fairly well on the Moon. 

THE CLASS OF AMBIGRADE LUNAR ORBITS 

While the laws that govern the development of prograde 
lunar orbits are not fully recognized yet, those determining the 
patterns of ambigrade lunar orbits are easily recognizable from 
orbit samples, if these are properly selected and shown for a 
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t yR I 

E. M. ORBIT OF JACOB1 CONSTANT C =  3.20388 

1 PROGRADE ORBIT THROUGH ( XR 1.030; Y R =  0)  

I 
F i g r e  86 

( I N N E R  BRANCHJ 

E . M .  ORBIT OF JACOB1 CONSTANT C =  3.20388 

AND CENTRAL PROGRADE ORBIT 

I 
PROGRADE ORBIT THROUGH ( X ~ = 1 . 0 5 0 ;  Y R = O )  

TIME SHOWN : 15.0 I 
Figure 87 
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tYR t yR 

I I ' (ZERO-V CURVE 1 I I 

INNER BRANCH 

j_ 
-0.1 

!ZERO-v CURVE I I I 
INNER BRANCH I 

- 
E.M. ORBITS OF JACOB1 CONSTANT C = 3 . 2 0 3 8 8  - 

PROGRADE ORBIT THROUGH ( XR=I.OO;YR=O) 
AND CENTRAL PROGRADE ORBIT 

T IME SHOWN: 25.0 1 I I ~ . __ 

Figure 88 

TIME SHOWN: 27 I 
Figure 89 

-f 
.~ , 1.0 

~ -_ 
E.M. ORBIT OF JACOB1 CONSTANT 

._ 
1 E.M. ORBIT OF JACOB1 

PROGRADE ORBIT PROGRADE ORBIT THROUGH (XR= 
TIME SHOWN : 50.0 TIME SHOWN: 1.306 

- 

Figure 90 Figure 91 
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s u f f i c i e n t  l e n g t h  of o r b i t a l  t i m e .  
o rb i t s  ( F i g u r e s  9 2  t o  108)  serve t h i s  purpose  and s imul t aneous ly  
c o n s t i t u t e  a su rvey  o f  o r b i t s  i n  t h i s  class. 
l a i d  o u t  such  t h a t  a l l  o r b i t s  are i n i t i a t e d  a t  t h e  XR-axis w i t h  
v a l u e s  s t a r t i n g  a t  XR = 1 .083  and i n c r e a s i n g  f o r  t h e  subsequen t  
o rb i t s .  

i s  a c o l l i s i o n  o r b i t .  
T h i s  o r b i t  c o n s t i t u t e s  t h e  l i m i t  between r e t r o g r a d e  and amhigrade 
o r b i t s .  C o l l i s i o n  i s  encountered  between t h e  l o o p s  t h a t  are 
numbered " 2 "  and "3". 

The subsequen t  s even teen  

T h i s  sequence i s  

The f i r s t  o f  t h i s  ser ies  (F igu re  9 2 )  

A'R 

0. I 

0 

-0.1 

IZERO-v IlU c u m  

- -1 
~~~~~ [ E.M. ORBIT OF JACOB1 - CONSTANT .C= 3.20388 

-1 I 
ORBIT COLLIDING WITH MOON 

X R - 1 . 0 8 8 ;  Y R = O ;  TIME SHOWN. 8.00 

Figure 92 

T h e  d i r . . !c t ion  of c o l l i s i o n  i s  n e a r l y  minus 90" as measured 
from t h e  moc..n r e l a t i v e  t o  t h e  p o s i t i v e  XR-branch. 

A s l i g h t  move o f  t h e  i n i t i a l  p o i n t  t o  t h e  v a l u e  XR = 1 . 0 9 0  
r e s u l t s  i n  an o r b i t  ( F i g u r e  93) t h a t  i s  p rograde  abou t  t h e  moon 
f o r  motion coming from t h e  same g e n e r a l  d i r e c t i o n  as t h a t  r e s u l t -  
i n g  i.n t h e  c o l l i s i o n  on t h e  former g raph ,  i . e . ,  be tween loops  " 2 "  
and ' '3".  The s a m e  e f f e c t  can  be observed  f o r  t h e  motion between 
loops "6" and ! ' 7 " ,  which a r e  p o s i t i o n e d  r e f l e c t i v e  t o  t h e  former 
two loops. The n e x t  p i c t u r e  ( 9 4 )  shows an ex tended  h i s t o r y  of  
t h e  i d e n t i c a l  o r b i t .  
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. 
E.M. ORBIT OF JACOB1 CONSTANT C=3.20388 
AMBIGRADE ORBIT THROUGH ( X ~ ' 1 . 0 9 :  Y,-Ol 

TIME SHOWN: 5.223 

' I MOTION 1 '  

E.M. ORBIT OF JACOB1 CONSTANT C=3.20388 
AMBIGRADE ORBIT THROUGH fXR=1.09; Y,=O) 

TIME SHOWN:28.21 

Increasing the initial point to the locations XR = 1.096, 
1.100,and 1.1018 produces orbits (Figures 95 to 98) that demon- 
strate that the loops " 2 "  and "6" are - to their full length - 
subject to gradual transformation into prograde motion. This 
trend is consistently followed in the remainder of the series. 

I E.M. ORBIT OF JACOB1 CONSTANT C . 3 . 2 0 3 8 8  I 

I I AMBIGRADE ORBIT THROUGH (X~'1.096; YR'O)  
TIME SHOWN: 5.0 

Figure 95 
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E.M. ORBIT OF JACOB1 CONSTANT C~3.20388 ~ 

Figure 96 

~ yR 

0. I - 
0 - 
-0. I - 

EM.  ORBIT OF JACOB1 CONSTANT C.3.20388 

TIME SHOWN: 25.2 
AMBIGRADE ORBIT THROUGH (X~=l. loO; Y ~ s 0 )  

- 

-N STA N T CT3.2 03 8 8 

AMBIGRADE ORBIT THROUQH (xR'1.1018; YR'O) 
TIME SHOWN1 6.07 

Figure 98 
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With respect to the other loops of the orbits, the reader 
will observe that all loops experience the change from retrograde 
to prograde motion (i.e., from negative to positive $ ,  if 4 is the 
central angle measured from the moon), but relative to each other 
the loops located at + =  +90° are most advanced in this develop- 
ment on any given orbit. This becomes evident on those figures 
of the remainder of the series that show orbits with a larger num- 
ber of loops, as Figure 97 (which is an extension to the orbit of 
Figures 9 6 ) ,  99, 100, and 101. Once this is understood, the ex- 
planation for the particular shapes of the loops of the seven- 
loop-orbit on Figure 102 is also clear. 

E.M.  ORBIT OF JACOBI CONSTANT- 

L A D E O R B I T T H R O U G H  c x m d  
TIME SHOWN: 25.0 '' I. ~ 

Figure 99 

The remaining six figures are actually presenting only two 
different orbits. The first of these orbits is given in two sec- 
tions of time history on Figures 103 and 104. The breakdown into 
two parts of orbital time serves to display the "pendulum"-type 
of stability, this orbit possesses. The reference orbit for which 
the present orbit is a perturbation, is the seven-loop periodic 

superposition of the two parts of the orbit history on one graphs 
destroys the lucidity to such a degree that the governing laws of 

+ orbit of Figure 102. It is here worthwhile to mention that a 

c formation cannot be recognized. 

The residual four graphs, Figures 105 to108, all represent 
the same orbit, i.e., the orbit initiated at the very border of 
the lunar region. The gradual build-up of this orbit serves to 
show that initial unsymmetries will be complemented by the suc- 
ceeding development such that finally an even distribution of 
loops is obtained. 
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.~ I:O~LACOBI CONSTANT c = ~ 2 0 3 a  I 

AMBIGRADE ORBIT THROUGH (XR= I .  1040; YR=O) 
TIME SHOWN. 33.9 

.- 

Figure 100 

MOON 

. 

~ 

I E M ORBIT OF JACOB1 C O N S T T T  C =  ~ 3.20388A - 1 E M ORBIT OF JACOB1 CONSTANT C -  3.203887 I 

J AMBIGRADE ORBIT THROUGH ( X ~ = l . 1 0 7 ;  YR'O) AMBIGRADE ORBIT THROUGH (XR= 1.1129; YR=O) 

- .~ 

Figure 101 Figure 102 
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I I I 
YR 

I E.M. ORBIT OF JACOB1 CONSTANT C =  3.20388 E.M. ORBIT OF JACOB1 CONSTANT C . 3 . 2 0 3 8 8  

AMBIGRADE ORBIT THROUGH ( XR * 1.114.Y = 0) 
AMBIGRADE ORBIT THROUGH ( X R =  1.114; Y R * O )  

T I M E  SHOWN : 33.56 TIME SHOWN FROM T x 3 2 . 9 6  TO T . 6 8 6 6  

Figure 103 

YR 

0.05 
/L- - 

P 

'""2 
0 'L- - o.! - 
-0.05 
'L 

Figure 104 

I I 

E.M. ORBIT OF JACOB1 

AMBIGRADE ORBIT 

Figure 105 
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, .., ... . . . ..... . . . .. . 

MOON 

XR 
I 

E.M. ORBIT OF JACOB1 CONSTANT C =  3.20388 ~ ] 
AMBIGRADE ORBIT THROUGH (XR= 1.11434;Y~=O) 

E.M. ORBIT OF JACOB1 CONSTANT C = 3.20388 

AMBIGRADE ORBIT THROUGH (XR=1.11434; Y R = O )  
TIME SHOWN: 38.0 

Figure 107 

I I ~ E R O - V C U R V E I  1 I ' 
Figure 106 

I MOON] I I  I 

E .M.  ORBIT OF JACOB1 CONSTANT C =  3.20388 

ADE ORBIT THROUGH (XR= 1 . 1  1 4 3 4 ; Y ~ = O )  
TIME SHOWN: 45.0  

Figure 108 

I n  conclusion t o  t h i s  ser ies ,  t h e  l a w s  t h a t  govern t h e  fo r -  
mation of t h e  o r b i t s  o f  t h i s  p a r t i c u l a r  series may be l i s t e d  as 
follows: 
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(1) For a f i x e d  d i r e c t i o n  @ from t h e  Moon, t h e  loops  p o s i -  
t i o n e d  a t  t h i s  d i r e c t i o n  undergo a c o n s i s t e n t  change toward a 
s t r o n g e r  prograde  c h a r a c t e r ,  a s  t h e  i n i t i a l  p o s i t i o n  of  t h e  o r b i t  
i s  v a r i e d  t o  l a r g e r  XR-values. 

toward, o r  i n t o ,  t h e  prograde d i r e c t i o n  t h a t  are p o s i t i o n e d  
c l o s e s t  t o  $I = * g o o ,  and t h e  loops  t h a t  l a g  behind most,  are po- 
s i t i o n e d  a t  $I = 180° and $I +15O. A t  CP = O o ,  t h e r e  i s  a weak 
l o c a l  "prograde-maximum" . 

( 2 )  For a f i x e d  o r b i t ,  t h o s e  loops  are developed f u r t h e s t  

The in fo rma t ion  on ambigrade o r b i t s  w i l l  now t u r n  t o  t h e  
a o r b i t s  i n i t i a t e d  a t  the-  XR-axis branch t h a t  i s  between Moon and 

Ea r th .  A sequence o f  f i v e  o r b i t s  i s  d e p i c t e d  on F igu res  1 0 9  t o  
113,  which ser ies  i s  o rde red  so  t h a t  i n i t i a l  p o i n t s  of o r b i t s  are 
f i r s t  c l o s e s t  t o  t h e  Moon and succeedingly  r ecede  i n  d i r e c t i o n  
Ea r th .  

iq 

The f i r s t  t h r e e  o f  t h e s e  f i g u r e s  show o r b i t s  t h a t  are  p e r i -  
o d i c  o r  ve ry  n e a r l y  so. The loops on each of these o r b i t s  show 
a " g r a d i n e s s "  p a t t e r n  t h a t  fo l lows  e x a c t l y  t h e  l a w s  formulated 
b e f o r e .  

I 

E . M .  ORBIT __ - OF JACOB1 CONSTANT C -  3 . 2 0 3 8 8  

AMBIGRADE ORBIT THROUGH ( x R ' o . 8 5 5 ; Y ~ ' o )  

Figure 109 
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C =  3.20388 

E.M. ORBIT OF JACOB1 .CONSTANT -~ __ (xR'o.841;  YR=O)  
PERIOD:  8. I7 -0850.  Y = o )  ] R_ L*YL 

Figure 110 Figure 11 1 

Compliance with these laws can also be observed with the 
loops on the next two orbits (Figures 112 and 113) though this is 
not as clearly visible due to the large number of loops shown for 
each orbit. 

The latter of these two orbits (Figure 113) is initiated at 
the point XR = 0.835209, which is very close to the location of 
the equilibrium point L1. 
study later. 

As last contribution to the description of ambigrade orbits, 
two figures, Figure 114 and 115, are inserted here, that indicate 
a method by which changes in gradiness may directly be studied. 
This method is similar to that discussed before for the terres- 
trial region; it may be called the method of successive apocenters. 
Two regions are singled out here: 

This area will be subject to a special 

On the first figure, departures from the zero velocity curve 
are between + = -90' and -145'. The succeeding apocenters are 
between @ = -145" and -180" and show all retrograde motion. 

On the Figure 115, departure is again from the zero-velocity 
curve and i.e., at points between $ = 0" and 30". The second 
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0. I 
%- 

-0.1 
%-- 

E. M. :::I.. ORBIT OF JACOB1 CONSTANT C= 3 . 2 0 3 8 8  

AMBIGRADE ORBIT THROUGH ( X R =  0 . 8 4 0 ; Y ~ = O )  

- -. - 

Figure 112 

YR 

0. I 
/L- - 

- 
-- E.M.  _ _ ~ _ _  ORBIT OF JACOB1 CONSTANT C= 3 . 2 0 3 8 8  1 
AMBIGRADE ORBIT THROUGH (X~ ’0 .835209;  YR=O) 

TIME SHOWN: 68 .24  
. . ~ ~ _ _ _ _  

Figure 113 

I E.M. ORBIT OF JACOB1 CONSTANT C.3.20388 

[ ORBITS THROUGH POINTS 

E.M. O R B ~ T  OF JACOBI 

Figure 11 5 

- -  

Figure 114 
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apocenters fall into the angular region between @ = 0" and -30" 
and show retrograde as well as prograde motion including its 
transitional cusping case. 

Using the method of successive apocenters, the same laws can 
be deducted that were derived by interpretation of phenomena ob- 
served on selected orbits. 

ORBITAL BEHAVIOR IN THE NEIGHBORHOOD OF THE 
CISLUNAR EQUILIBRIUM POINT L1 

It is appropriate at this point to clarify the geometry of 
the regions in the neighborhood of the cislunar equilibrium point 
L 1 .  According to ref. 1, the separation of the terrestrial re- 
gion from the lunar region for u = 0.0125 is occurring at the 
C-level of 

C(L1)  = 3.2038861611 

this value being accurate to eleven digits only. Further, if the 
C-level would correspond exactly to C(L1), the point L1 would be 
the only common point of the two regions, located at 

XR (L1) = 0.8352093934 

accurate to 10 digits. 

For the current investigation the C-level was chosen to be 
exactly 

C = 3.20388. 

Since the C-value chosen for the current investigation is smaller 
than the accurate value of C ( L 1 ) ,  there exists a connecting pass 
between the terrestrial and lunar region at the current C-level. 
At the narrowest place, this pass (or "neck") has the diameter of 
about 0.0025 units. The shape of the pass can be seen on several 
of the following diagrams. 

The equilibrium point L1 is located where the pass is 
smallest. 

There are two aspects that hold the interest of the investi- 
gator in connection with the pass. 
the local behavior of the orbits in the neighborhood of the pass, 
as the formation of particular loops, etc. The second deals with 
the large scale behavior of orbits that pass through the pass. 
These aspects will be discussed sequentially. 

The first is concerned with 
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The problem of o r b i t a l  behavior  " i n  t h e  s m a l l "  n e a r  L 1  i s  
P rogres s ing  a long  t h e  XR-axis and a t t a c k e d  a g a i n  i n  two ways: 

p r o g r e s s i n g  a long  t h e  bo rde r  l i n e .  

F igu res  1 1 6  t o  118 s e r v e  t o  show t h e  phenomena developing  
a long  t h e  f i r s t  approach. O r b i t s  are i n i t i a t e d  or thogonal  t o  t h e  
XR-axis, y i t h  p o s i t i v e  ?R t o  t h e  l e f t  of t h e  p o i n t  L l ,  and w i t h  
n e g a t i v e  YR t o  t h e  r i g h t  of L1. Figure  1 1 6  d i s p l a y s  one of  t h e  
r e s u l t i n g  p a t t e r n s :  Th i s  i s  a p a t t e r n  t h a t  i s  a r a t h e r  symmetri- 
c a l  w i th  r e s p e c t  t o  a ve r t i ca l  l i n e  through L l ,  which l i n e  may 
also be cons ide red  t e m p o r a r i l y  as d i v i d i n g  t h e  l u n a r  from t h e  

L t e r res t r ia l  r e g i o n .  From both s i d e s ,  o r b i t s  t h a t  are prograde  
w / r  t o  t h e i r  r e g i o n  approach t h e  L1-point ,  whi le  t hey  a l s o  ap- 
proach t h e  bo rde r .  (See o r b i t s  A ,  €3, C and G ,  F ,  E on F i g u r e  1 1 6 ) .  
These o r b i t s  s t a y  prograde  till they  r each  t h e  cusping  o r b i t s  C 
and E ,  r e s p e c t i v e l y .  

A unique o r b i t  t h e n  e x i s t s  t h a t  loops  about  L 1  and c l o s e s  on 
i t s e l f  ( o r b i t  D ) .  This  i s  t h e  l i b r a t i o n  o r b i t  t o  L 1 .  I t s  t i m e  
p e r i o d  i s  2 . 7  u n i t s .  

T h i s  p a t t e r n  i s  supplemented by t h e  development s h o p  on 
Figure  1 1 7 .  H e r e  t h e  p r o g r e s s i o n  of o r b i t s  of p o s i t i v e  YR i s  con- 
t i n u e d .  I t  shows t h e  cusping  o r b i t  "B"  t o  be fol lowed by ambi- 
grade  o r b i t s  which f i r s t  belong t o  t e r r e s t r i a l  o r b i t s ,  l a t e r  t o  
l u n a r  o r b i t s .  The o r b i t  "D" on t h i s  p i c t u r e  i s  n e a r l y  cusping  
aga in .  Th i s  t y p e  of o r b i t  w i l l  be  d i s c u s s e d  s h o r t l y .  

E. M O R B I T S O F  JACOB1 CONSTANT C =  3.20388 

SEPARATED ORBITS IN THE NEIGHBORHOOD OF LI 
~ 3 1 __ - -  ._ 

- 

Figure 116 
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E.M. ORBITS OF JACOB1 CONSTANT C . 3 . 2 0 3 8 8  I 

OF L, 1 
Figure 117 

In agreement with the "lateral" symmetry characteristics that 
hold for developments ''in the smgll", a similar progression can 
be shown for orbits of negative YR, approaching L 1  from the right. 

orbits are started at the very point of L 1  in opposite directions 
(orbit "A" with OR = -90' ;  orbit "B" with OR = + g o o ) .  The orbits 
develop in shapes that are well symmetrical to each other. The 
third orbit ( " C " )  is initiated with OR = 100'. 

This is corroborated by the third figure (Figure 118): Two 

The second attack on the problem of motion near L 1  and its 
results are explained on hand of Figures 119 to 122. 

Figure 119 shows a sequence of six orbits that all touch the 
lower border of the pass. As the cusps progress from the terres- 
trial region toward the lunar region, the orbits' second legs 
(downstream) swing over from the terrestrial region to the lunar 
region. The events connected with this transition are presented 
on hand of the following three figures. Figure 120 shows a se- 
quence of orbits that all would be, progression-wise, placed be- 
tween the two orbits " C "  and 'ID" of the former graph. In this 
sequence (Figure 120) one n,otices firstly orbit "B"  which is the 

6 0  

-~ . . ... . . .. . ___. . . .. 



, 

YR 

p o 5  

L- 

.0.005 
'L 

;;oat, 

... 

Ll \ 

CISLUNAR '\, 
EQUILIBRIUM L. It POINT 

l . . : I . : . I  
-I- -+ 

. . .  I . .  

... 

8 , (A)=  -90°; 8 ~ ( 8 ) = 9 0 O ;  8 ~ ( c ) = l O o "  
~ ~- 

Figure 118 

r 
CURVE' 
TWEEN 
rR lAL 
JAR 

- 

I E.M. O R F S  OF JACOB1 

I SIX ORBITS WITH 
I I 

Figure 119 Figure 120 

61 



double-cusping o r b i t  encountered b e f o r e ,  on F igure  1 1 6 .  Secondly,  
between o r b i t  "D" and o r b i t  "I", t h e r e  must e x i s t  one o r b i t  t h a t  
c u t s  t h e  XR-axis o r thogona l ly .  For r e f l e c t i o n  r e a s o n s ,  t h e r e f o r e ,  
it forms a loop about  L1 and produces a second cusp a t  t h e  upper 
b o r d e r ,  a f t e r  which it r e t u r n s  i n t o  t h e  t e r res t r ia l  r eg ion .  Th i s  
o r b i t  i s  d i s p l a y e d  on F igu re  1 2 1 .  

E.M. ORBIT OF JACOB1 CONSTANT C =  3.20388 1 
SYMMETRIC ORBIT WITH LOOP AROUND LI 

Next now, it w i l l  be a t tempted  t o  make a p o i n t  f o r  t h e  e x i s -  
t e n c e  of  a double-cusping o r b i t  t h a t  i s  d i f f e r e n t  from t h a t  o f  
F igu re  1 2 1  by t h e  f a c t  t h a t  it loops  t w i c e  about  L 1 :  F igu re  1 2 2  
i l l u s t r a t e s  a sequence o f  f o u r  o r b i t s  t h a t  a l l  are making f i r s t  a 
loop  about  L1 (as shown by t h e  dashed l i n e )  and a f t e r  t h e  loop 
are  showing a p a t t e r n  of motion t h a t  r e p e a t s  t h e  p a t t e r n  observed 
on F igu re  1 2 0 .  I n  p a r t i c u l a r ,  f o r  c o n t i n u i t y  r e a s o n s ,  t h e  con- 
c l u s i o n  i s  p e r m i s s i b l e  t h a t  t h e r e  e x i s t s  an o r b i t  between o r b i t s  
"G"  and "H" t h a t  crosses t h e  XR-axis o r t h o g o n a l l y .  This  t hen  i s  
t h e  double- looping,  double-cusping o r b i t .  

E.M. ORBITS OF JACOB1 CONSTANT C - 3 , 2 0 3 8 8  ] 

I FOUR CUSPING ORBITS WITH LOOPS AROUND LI 

0.001 ~ 

~ 

1.834 L 

xR - 

iYR 

0.001 - 
L 

-0.001 - 
1.836 

XR 

Figure 121 Figure 122 

The same type  of  argument can be used t o  show t h e  e x i s t e n c e  
of  double-cusping o r b i t s  w i th  more loops .  
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BI-REGIONAL ORBITS 

R 
I 

I n  r e f e r e n c e  t o  t h e  problem of "large scale behav io r "  of 
o r b i t s  t h a t  v i s i t  t h e  neighborhood of L l ,  it may be p o i n t e d  o u t  
t h a t  t h o s e  o r b i t s ,  which, a f t e r  v i s i t ,  r e t u r n  t o  t h e i r  o r i g i n a l  
r e g i o n ,  w e r e  d i s c u s s e d  t o  some e x t e n t  w i t h i n  t h e  classes t o  which 
t h e y  belong.  What remains t o  be s t u d i e d ,  however, i s  t h e  impor- 
t a n t  c lass  o f  o r b i t s  t h a t  - i n  t h e  c o u r s e  o f  p a s s i n g  through t h e  
neighborhood of L 1  - cross from t h e  l u n a r  t e r r i t o r y  over i n t o  t h e  
t e r res t r ia l ,  o r  reverse. 

Th i s  i n v e s t i g a t i o n  i s  p a r t i c u l a r l y  i m p o r t a n t  f o r  t h e  c u r r e n t  
C- l eve l ,  because t h e  o k b i t s  p a s s i n g  through t h e  gap may, f o r  
p r a c t i c a l  pu rposes ,  be c o n s i d e r e d  o r b i t s  o f  t h e  lowest p o s s i b l e  
C- leve l  t h a t  are a b l e  t o  c r o s s  o v e r .  

For  any s u b s t a n t i a l  wid th  o f  t h e  p a s s  between r e g i o n s ,  a 
good survey  of a l l  p o s s i b l e  b i - r e g i o n a l  o r b i t s  would be o rgan ized  
a long  a procedure  as  s c h e m a t i c a l l y  p r e s e n t e d  on F i g u r e  123. A t  
a p p r o p r i a t e l y  spaced p o i n t s  a l o n g  t h e  s e p a r a t r i x  (or any o t h e r  
s u i t a b l y  chosen l i n e  t h a t  connec t s  t h e  two branches  o f  t h e  C-curve 
a c r o s s  t h e  gap)  o r b i t s  are i n i t i a t e d  t h a t  e . g . ,  have d i r e c t i o n s  
toward t h e  t e r r e s t r i a l  r e g i o n ,  r ang ing  i n  pa th -ang les  from 9 0 "  t o  
minus 9 0 ° ,  t h e  s t e p s  b e i n g  chosen t o  f i t  a r easonab le  g r i d - s i z e .  
The o r b i t s  a r e  computed f o r  p o s i t i v e  t i m e  as w e l l  a s  n e g a t i v e  
(backward) t i m e  - 

Due t o  t h e  l a w s  of  r e f l e c t i o n  on t h e  XR-axis, t h e r e  i s  an 
o p t i o n  of t h i s  method o r  t h e  a l t e r n a t e  o f  choos ing  p o i n t s  on h a l f  
o f  t h e  s e p a r a t r i x  o n l y  and i n i t i a t i n g  o r b i t s  through t h e s e  p o i n t s  
i n t o  d i r e c t i o n s  t h a t  are r e p r e s e n t a t i v e  f o r  t h e  f u l l  c i r c l e .  
Again bo th  d i r e c t i o n s  on t h e  t i m e  s c a l e  a r e  t o  be computed, ex- 
c e p t  f o r  t h e  o r b i t s  o r i g i n a t i n g  a t  t h e  p o i n t  on t h e  XR-axis. 
There a re  two more o p t i o n s  from l a t e r a l  symmetry. 

I n  t e r m s  of t h e  symbolic  l a b e l i n g  of F igu re  118 ,  two o f  t h e  
f o u r  o p t i o n s  are  A ,  B ,  C ,  D ,  E ,  F and A ,  B ,  C ,  D ,  E ' ,  F ' .  

On t h e  p r e s e n t  C- leve l  t h e  gap i s  so narrow t h a t  t h e  selec- 
t i o n  of two p o i n t s  on t h e  s e p a r a t r i x  i s  s u f f i c i e n t  f o r  r ep resen -  
t a t i o n  of 'la11" p o i n t s  on t h e  s e p a r a t r i x .  The p o i n t s  chosen are 
t h e  upper  bo rde r  p o i n t  and t h e  p o i n t  on t h e  XR-axis, i . e . ,  t h e  
p o i n t  L 1 .  For  t h e  upper  p o i n t ,  where t h e  v e l o c i t y  magnitude i s  
z e r o ,  a d i r e c t i o n a l  v a r i a t i o n  i s  w i t h o u t  meaning. 

F igu re  1 2 4  traces t h e  c o u r s e  of t h r e e  orb i - t s  th rough t h e  gap ,  
i . e . ,  t h e  cusp ing  o r b i t  and two o r b i t s  th rough L l ,  t h e s e  w i t h  
d i r e c t i o n s  of 180 and 1 4 0  d e g r e e s .  
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Figure 123 

, 
EQUILIBRIUM POINT 

E.M. ORBITS OF JACOB1 CONSTANT .- C.3.20388 

CROSS-OVER PORTIONS OF BI-REGIONAL ORBITS L 8,(B)=l8O0 8 R ( C ) = 1 4 0 0  

Figure 124 
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These same three orbits are illustrated for a longer time 
period on the next graph, Figure 125. The traces of the three 
orbits are seen to coincide practically for all time shown. This 
is true for all directions for which the orbits are bi-regional. 

The time periods here, if counted from the event of crossing 
the separatrix, are forward about ten units and backwards four 
units. On the former figure, Figure 1 2 4 ,  the times run to about 
one unit in both directions. 

A study of the behavior of some bi-regional orbits on still 
longer time-histories is documented in the remaining four figures 
of this section (Figures 126-129). The first one shows the orbit 
"B"  of Figure 1 2 4  now traced to 102 units of time (i.e., about 1 4  
calendar months), while the backward tracing of this orbit is 
done on Figure 1 2 7  to about four calendar months. (However, the 
application of reflection reverses the time direction and shows 
the mirror image of the lunar region orbit.) 

I- 

1 
I t i-- 

E.M. O R B I T S  OF JACOB1 C O N S T A N T  C = 3 . 2 0 3 8 8  

F R O M  L U N A R  I N T O  T E R R E S T R I A L  3 R E G I O N  
B I REG ION A L  o R B ITS c RO s s I N G 

Figure 125 

YR 

1 t- 1 
I tl.0 I I 

t I t- 

-~ - 
E.M. O R B I T  OF JACOB1 CONSTANT C=3.20388: 
BI-REGIONAL ORBIT THROUGH ( X ~ z . 8 3 5 2 0 9 ;  
Y ~ = 0 ; 8 = 1 8 0 " )  TIME SHOWN: 102.0 -_ 

Figure 126 
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'J.1 I 

I 

' MOON ' I 

E.M. ORBIT OF JACOB1 CONSTANT C = 3 . 2 0 3 8 8  

BI-REGIONAL ORBIT THROUGH ( X ~ = . 8 3 5 2 0 9 ; Y ~ = O )  
LUNAR REGION PART; TIME SHOWN : 26 .6  E- Figure 127 

The last two figures of this chapter then trace the history 
of the terrestrial part of the orbit "A" of Figure 124. The 
history is shown first for 52 time units, and next for 102 time 
units. For better visibility, the apogees of the orbit on Figure 
128 are numbered sequentially. 

Several interesting and important conclusions can be made 
from the orbital behavior observable here with the bi-regional 
orbits : 

on the lowest energy level, maintain a rather large distance from 
both, Earth and Moon. To obtain trajectories that commute between 
the neighborhoods of the two masses, additional energy would be 
needed either for making directly connecting flights or for orbit- 
transfer maneuvers. 

(1) All orbits that connect lunar and terrestrial regions 

(2) Placinq a satellite at the cislunar equilibrium point 
L 1  from either Earth or Moon requires an energy level higher than 
the "lowest", the additional energy needed either for transfer 
maneuvers, or for a braking impulse at Ll, or a combination of 
both. 
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Figure 128 
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BIREGIONAL ORBIT THROUGH (x~=.835209;Y~=.o0~217) 
T I M E  SHOWN: 102 I 

Figure 129 67 



OUTER REGION ORBITS 

The i n v e s t i g a t i o n  o f  t h e  p a t t e r n s  formed by t h e  o r b i t s  t h a t  

F i r s t  r e t r o g r a d e  o r b i t s  w i l l  be s t u d i e d  
e x i s t  o u t s i d e  t h e  empty area f o r  C = 3.20388 w i l l  be c a r r i e d  
through i n  t h r e e  s t e p s .  
t h a t  are i n i t i a t e d  a t  t h e  p o s i t i v e  X R - a x i s  a t  d i r e c t i o n s  or thogo-  
n a l  t o  t h e  a x i s .  Secondly,  o r b i t s  w i l l  be i n i t i a t e d  a t  v a r i o u s  
p o i n t s  a long  t w o  i s o t a c h s ,  w i t h  v e l o c i t i e s  p a r a l l e l  t o  t h e  i s o -  
t a c h .  The l a s t  p a r t  w i l l  be concerned w i t h  o r b i t s  i n i t i a t e d  wi th  
prograde  v e l o c i t y  d i r e c t i o n s ,  r e s u l t i n g  i n  ambigrade o r b i t s .  

a t  t h e  p o i n t  of  i n t e r s e c t i o n  of t h e  p o s i t i v e  XR-axis w i th  t h e  
o u t e r  z e r o - v e l o c i t y  curve  (XR = 1 . 2 0 9 2 ) .  The o r b i t  h i s t o r y  
(F igure  1 3 0 )  i s  t r a c e d  forward and backwards of t h e  cusping even t  
f o r  7 3 . 4  t i m e  u n i t s .  This  o r b i t  r eaches  a maximum d i s t a n c e  from 
t h e  o r i g i n  of  about  8 u n i t s ,  a f t e r  which it r e t u r n s  t o  t h e  v i c i n i t y  
of t h e  z e r o - v e l o c i t y  cu rve .  

For t h e  subsequent  o r b i t  (F igu re  131)  t h e  p o i n t  of o r b i t  
i n i t i a t i o n  i s  s h i f t e d  t o  t h e  l o c a t i o n  (XR = 1 . 2 1 5 ;  YR = 0 ) .  The 
e f f e c t  of t h i s  s h i f t  i s  a c o n t r a c t i o n  of t h e  dimension of  t h e  
o r b i t  a g a i n s t  t h e  former o r b i t  t o  a maximum r a d i u s  of about  6 

The r e t r o g r a d e  series i s  s t a r t e d  wi th  t h e  o r b i t  t h a t  cusps 

KTANT C = 3 . 2 0 3 8 8  - 

I CUSPING ORBIT THROUGH ( X R '  1.20921; YR'O)  
AND CENTRAL ORBIT OF OUTER REGION 
T I M E  SHOWN ON CUSPING O R B I T : f 7 3 . 4  .~ ~~~~ ~. 

Figure 130 

L 

CENTRAL ORBIT I 1 -  
I 1 
1 

E. M. ORBIT OF JACOB1 CONSTANT C 3.20388 ] 
I RETROGRADE ORBIT THROUGH (x,=1.215;  Y ~ = O )  I I I AND CENTRAL ORBIT OF OUTER REGION 

TIME SHOWN: k 5 0 . 2  
L 

Figure 131 
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E' 

u n i t s .  Th i s  o r b i t  i s  a l so  t r a c e d  beyond i t s  second minimum, f o r  
p o s i t i v e  and n e g a t i v e  t i m e .  The c e n t r a l  o r b i t ,  t o  which t h e  
p r e s e n t  series of r e t r o g r a d e  o r b i t s  w i l l  f i n a l l y  c o n t r a c t ,  i s  
a l r e a d y  shown w i t h  t h e  graphs  of t h e  l a s t  two o r b i t s  (see dashed 
c u r v e ) .  

The development of  t h i s  series toward t h e  c e n t r a l  o r b i t  i s  
i l l u s t r a t e d  by t h e  sequence of  t h e  n e x t  f i v e  f i g u r e s ,  F igu res  1 3 2  
t o  1 3 6 .  The c e n t r a l  o r b i t  i t s e l f  i s  p a s s i n g  through t h e  p o i n t  
(XR = 1.713; YR = 0) and shows a p e r i o d  of  1 1 . 6 4  u n i t s  (F igure  1 3 6 ) .  

__ -~ ~ .. L .  E ~ O R B I ~ O F  JACOB!CONSTANT c = 3.20388 E. M. ORBIT OF JACOB1 -COETA.NT C = 3.20388 

RETROGRADE ORBIT THROUGH ( X R =  1.30032; YREO) RETROGRADE ORBIT THROUGH ( X R =  1.40; YR = O )  

___ .- - 
PERIOD: 44.9 

.~ ~. 

Figure 132 Figure 133 

I t  i s  worth n o t i n g  t h a t  t h e  c e n t r a l  o r b i t ,  a t  i t s  c r o s s i n g  
p o i n t  w i th  t h e  p o s i t i v e  XR-axis,  shows a v e l o c i t y  maximum, i n  con- 
t r a s t  t o  t h e  e x i s t e n c e  of  a v e l o c i t y  minimum a t  t h e  p o s i t i v e  XR- 
a x i s  f o r  t h e  f i r s t  o r b i t s  of t h i s  se r ies  ( z e r o - v e l o c i t y  f o r  t h e  
very  f i r s t  o n e ) .  There i s  an i n t e r e s t i n g  g r a d u a l  t r a v e l  of  t h e  
f i r s t  minimum-velocity-point from t h e  p o s i t i v e  XR-axis toward 
t h e  n e g a t i v e  XR-axis as t h e  series p r o g r e s s e s  beyond t h e  o r b i t  of 
F igu re  133. A t  t h e  moment t h e  r i g h t  hand a x i s  p o i n t  loses t h e  
p o s i t i o n  of  a minimum-velocity p o i n t ,  it a c q u i r e s  t h e  p o s i t i o n  of 
a maximum-velocity p o i n t .  Both extrema are unders tood ,  i n  g e n e r a l ,  

I 
r; 

[ 

I as loca l  extrema, on ly .  
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- CONSTANT C =  3.20388 E.M.  O R B I T  OF JACOB1 CONSTANT C . 3 . 2 0 3 8 8  

( X R =  1.480; Y R - 0 )  RETROGRADE ORBIT THROUGH (X,= 1.580; YR= 0 )  
T I M E  SHOWN: f 7 1 . 0 4  ---I =ME SHOWN: f 60.1 

Figure 135 Figure 134 

n 

- -1 -t"- ;-- 

E. M. ORBIT OF JACOB1 CONSTANT C = 3.20388 I I CENTRAL ORBIT OF RETROGRADE CLASS OF 
OUTER REGION (X~'1.713; Y,=O; PERIODS 11.64) 

-. - . .  . 

Figure 136 
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Contras ted  t o  t h e  l a s t  series w i l l  now be a series of t h o s e  
r e t r o g r a d e  o r b i t s  t h a t  s t a r t  o r t h o g o n a l l y  t o  t h e  n e g a t i v e  XR-axis. 
This  series f i n d s  i t s e l f  i l l u s t r a t e d  on t h e  f o u r  f i g u r e s ,  F igu res  
137  t o  1 4 0 .  The p r o g r e s s i o n  i s  r e v e r s e  t o  t h a t  of  t h e  former 
series i n  t h a t  t h e  series s t a r t s  w i th  an o r b i t  close t o  t h e  cen- 
t r a l  one. By p u l l i n g  t h e  i n i t i a l  p o i n t  o f  t h e  o r b i t s  s t epwise  
closer t o  t h e  z e r o - v e l o c i t y  cu rve ,  t h e  o v e r a l l  s i z e  of  t h e  o r b i t s  
i n c r e a s e s .  I n  t h i s  p r o g r e s s i o n  t h e  maximum p o i n t  of t h e  o r b i t s  
goes beyond all l i m i t s  b e f o r e  t h a t  o r b i t  i s  reached t h a t  touches  
t h e  ze ro -ve loc i ty  cu rve .  
1 4 0 .  

This  l a s t  o r b i t  i s  d e p i c t e d  on F igu re  

. . . . . ~  . ~ ._ 

TIME SHOWN: 62.02 
-~ 

Figure 137 

- _ _ _ _  ______ 
T I M E  SHOWN 6 0 0  

Figure 138 

T h e  c o n t r a s t  i n  o r b i t a l  behavior  between t h e  l a s t  o r b i t  and 
t h e  o r b i t  t h a t  w a s  i n i t i a t e d  wi th  ze ro -ve loc i ty  a t  t h e  p o s i t i v e  
XR-axis (F igure  1 3 0 )  b e f o r e ,  g i v e s  r i se  t o  t h e  q u e s t i o n ,  what t h e  
behavior  w i l l  be fo r  t h o s e  o r b i t s  t h a t  a r e  s t a r t e d  a t  o t h e r  p o i n t s  
of t h e  s a m e  z e r o - v e l o c i t y  cu rve .  Th i s  q u e s t i o n  w i l l  be cons ide red  
n e x t .  
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E.M. ORBIT-OF JACOB1 CONSTLNT C 5 3 . 2 0 3 8 8  CONSTANT C.3 .20388 ] 

RETROGRADE ORBIT THROUGH (XR.4.275; YR =O) (X,=-l.26765; YR=O) 
TIME SHOWN: 21.4 

Figure 140 

TIME SHOWN1 83.1 
_ -  

Figure 139 

L 
FLY-BY EFFECT ON OUTER REGION ORBITS 

The f ly-by  e f f e c t  d i scussed  h e r e  i s  d i f f e r e n t  from t h a t  d i s -  
cussed  be fo re  f o r  o r b i t s  of t h e  t e r res t r ia l  r eg ion .  Concern i s  
h e r e  given t o  t h e  q u e s t i o n  of r e l a t i v e  magnitude of r a d i a l  d i s -  
t a n c e s  an o r b i t  assumes b e f o r e  and a f t e r  a c l o s e  approach t o  t h e  
EM-system. Obviously t h i s  e f f e c t  does n o t  e x i s t  f o r  cases where 
c l o s e  approach i s  e x a c t l y  on t h e  ( p o s i t i v e  o r  n e g a t i v e )  XR-axis, 
s i n c e  r e f l e c t i o n  l a w s  p rovide  h e r e  t h e  answer .  The dependence of 
t h e  e f f e c t  on t h e  c e n t r a l  ang le  4 ,  under which c l o s e  approach i s  
measured, w i l l  conven ien t ly  be e s t a b l i s h e d  by va ry ing  t h e  c l o s e  
approach p o i n t  a long  an i s o t a c h ,  t o  s t a r t  w i t h  e . g . ,  t h e  zero- 
v e l o c i t y  curve .  The procedure i s  i n d i c a t e d  on Figure  1 4 1  where 
f i v e  s h o r t  t i m e - o r b i t s  a r e  shown, each of which cusping  on t h e  
border  curve .  Note i s  taken  t h a t  a g a i n  t h e  r e f l e c t i o n  l a w s  a l l ow 
t o  res t r ic t  t h e  s t u d y  t o  e i t h e r  t h e  upper o r  t h e  lower h a l f  o f  
t h e  i s o t a c h ,  i f  o r b i t  h i s t o r i e s  are computed forward a s  w e l l  a s  
backward. 

The e f f e c t  on t h e s e  o r b i t s  i s  shown by t h e  succeeding  seven 
g raphs ,  F igu res  1 4 2  t o  1 4 8 .  The f i r s t  of t h e s e  i s  t h e  symmetri- 
c a l  case  a g a i n ,  p rov id ing  a comparison b a s i s  f o r  t h e  n e x t  c a s e s .  
F i g u r e s  1 4 3  and 1 4 4  show t h e  o r b i t  h i s t o r y  be fo re  and a f t e r  a c l o s e  
approach through t h e  border  p o i n t :  ( X R  = 1 . 2 1 2 4 6 ;  YR = 0.057889).  
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E.M. ORBIT OF JACOB1 CONSTANT C =  3.20388 

FIVE CUSPING ORBITS OF OUTER REGION 

Figure 141 
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TIME OF VR-MAXIMUM -69 95 _ _  

Figure 143 

E.M. ORBIT OF JACOB1 CONSTANT C =  3.20388 
CUSPING ORBIT THROUGH ( X R =  1.20921 ; YR 0 )  

TIME OF VR-MAXIMA: f33.82 

Figure 142 

1 

For the two branches the maximum-velocity points are marked on the 
figures, from which can be recognized that there is a reduction- 
through fly-by - from a maximum distance of about 14 units to a 
maximum distance of about 6 units. 
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If the point of close approach is raised further along the 
zero-velocity curve, as to the point: (XR = 1 .2022 ;  YR = 0.35194), 
both upstream and downstream maxima of the orbit history are at 
larger distances than on the former orbit (Figure 145 and 146), 
but the upstream maximum lies at infinity, while the maximum 
after fly-by is at a distande of about 1 3  units. 

t yR 
tYR 

Figure 146 Figure 145 

While the effect of fly-by within the former orbit is a re- 
duction in maximum distance, the fly-by effect for the latter 
orbit can be called a "capture" 

those of the former two cases, one would speak of an increase in 
maximum distance and of an escape-maneuver, respectively. 

(at least a temporary one). 

For orbits whose close approach points are reflective to 

The magnitude of the fly-by effect will now briefly be 
studied for orbits that have their close approach-point on the 
isotach of C = 3.25. 
the zero-velocity curve can be seen Oh Figure 147. There also 
are shown four short-time orbits that are tangential to the iso- 
tach 3.25. 

The position of this curve in relation to 
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_ _ _ -  -- I E.M ORBITS O F  

Figure 147 

Of the orbits computed here, only two will be demonstrated. 
Figure 148 shows the orbit that is orthogonal to the positive 
XR-axis, and Figure 149 displays the forward and backward history 
of the orbit through the point: (X, = 1.2318; YR = 0.3894). 
This is nearly that point on the isotach where the ratio between 
the maximum distances before and after fly-by is largest. As 
this figure demonstrates, the fly-by effect for orbits starting 
on the isotach 3.25 is considerably smaller than that for orbits 
through points on the zero-velocity curve. 

A summary of the fly-by effect connected with the outer- 
region orbits of the C-level of 3.20388 is then presented in 
diagrammatic form on Figures 150 and 151. The pictures show 
radial distances of apocenters for two successive apocenters plot- 
ted over the angular location of the pericenter that occurs be- 
tween the two apocenters, the angle being measured from the origin 
in mathematically positive direction. The first figure is con- 
cerned with orbits that are cusping on the zero-velocity curve. 
The second figure is for orbits that are tangential to the isotach 
of 3.25.  Notice that the second of the figures carries the 
abscissa through +180° while the first one shows an abscissa range 
of only 10 degrees. 
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TIME SHOWN I f 14.2 
ORBIT TANGENTIAL TO ISOTACH 3.250 

E.M. ORBIT OF JACOB1 CONSTANT C = 3 . 2 0 3 8 8  1 

I 
~~~~~ 

RETROGRADE ORBIT THROUGH (XR= 1.2318; Y~xO.3894)  
TIME SHOWN: -17.3 TO +10.7 

ORBIT TANGENTIAL TO ISOTACH 3.250 

Figure 148 Figure 149 
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AMBIGRADE ORBITS OF THE OUTER FU3GION 

Since the orbit that cusps at the intersection of the posi- 
tive XR-axis with the zero-velocity curve, has a first apocenter 
of finite distance, continuity considerations demand that there 
is a lso  a group of orbits (though it may be small, comparatively) 
that start in prograde direction on the positive XR-axis and have 
an apocenter of finite distance. The orbits are, in fact, ambi- 
grade since the motion reverses very soon. 

Of this group, two examples will be shown on the following 
four figures, Figures 152 to 155. The first two pictures show 
two different time histories of the orbit through the point: 
(XR = 1.210; YR = 0). The second couple of figures accommodate 
two corresponding views for the orbit through (XR = 1.212; YR = 0). 

YR 
.IO 
%- 

.os 
rL- 

0 <- 

-.os 
%- 

-.IO 
rL- 

I 
E. M. ORBIT OF JACOB1 CONSTANT C= 3.20388 

TIME SHOWN 1 kO.9 
AMBIGRADE ORBIT THROUGH ( X R =  1.210; YR'O; 8 R = 9 0 ° )  

Figure 152 

-10 B 
1 

I 

IO r 

- 1  r I N T  OF F ]  
VELOCITY MAXIMUM 

Figure 153 

It is recalled that the cusping orbit which intersects the 
XR-axis with zero-velocity at the value of XR = 1.2092, reaches 
a first maximum of about 8 units. 
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E.M. ORBIT OF JACOB1 CONSTANT C =  3.20388 

AMBIGRADE ORBIT THROUGH (xR'1.212; YR=O; &=90°) 
T I M E  SHOWN: +0.84 TIME S H O W N '  - 4 . 2  TO +73.98 

Figure 154 Figure 155 

The two-ambigrade o r b i t s  r e a c h  a f i r s t  maximum of  1 0  u n i t s  
and of 1 5  u n i t s ,  r e s p e c t i v e l y .  

With t h e  i n c r e a s e  of i n i t i a l  XR, t h e  a p o c e n t e r  d i s t a n c e s  
from t h e  o r i g i n  grow r a p i d l y .  The ambigrade o r b i t s  a re  becoming 
e scape  o r b i t s ,  b e f o r e  t h e i r  p e r i c e n t e r s  have reached  t h e  XR-value 
of 1 . 3 0 .  
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